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Josephson junctions and sine-Gordon equations: an

Introduction





Chapter 1

1.1 Josephson junctions with phase shift

Heike Kamerlingh-Onnes in 1911 discovered an unmeasureblysmall value of
electrical resistance of mercury when it was cooled below 4.2 K [1]. He called this
phenomenon of no-resistance to an electrical currentsuperconductivity. In the sub-
sequent years many more materials were found to be superconducting when cooled
down low a certain critical temperatureTc. For his discovery, Kamerlingh-Onnes was
awarded the 1913 Nobel Prize in Physics.

A microscopic explanation of superconductivity was not found for nearly half a cen-
tury. An important contribution to the understanding of this new state of matter was
made by Herbert Fröhlich in 1950 [2] and Leon N. Cooper in 1956 [3]. Fröhlich real-
ized that under the right conditions, electrons could experience an attractive interaction
mediated byphonons. Phonons are quanta of crystal lattice vibrational energy which
are analogous to the quanta of light orphotons. The phonons excert forces that can
overcome the electrons’ Coulomb repulsion. Afterwards, Cooper showed that given
those right conditions, the ground state of a material is unstable with respect to pairs
of electrons. Therefore, electrons form so-calledCooper pairsthat are coupled over a
range of hundreds of nanometers, i.e. three orders of magnitude larger than the lattice
spacing. The total momentum of this Cooper pair is constant,and the spins of the two
electrons forming the Cooper pair are opposite to each other.

A theory of superconductivity was built by John Bardeen, Leon N. Cooper, and Robert
J. Schrieffer [4] in 1957 which is named after them, i.e. BCS theory. The BCS theory
shows that it is possible for a number of Cooper pairs to form ahomogeneous con-
densate at the same energy level. Below the critical temperature, this condensation is
able to move through the lattice relatively unaffected by thermal vibrations and hence
experiences no resistance. Bardeen, Cooper, and Schrieffer were then awarded the
1972 Nobel Prize in Physics.

Another discovery was made in 1962 by Brian D. Josephson who predicted that
Cooper pairs can tunnel through a nonsuperconducting barrier from one supercon-
ductor to another without any voltage across the barrier[5]. He also derived the exact
form of the current and voltage relations for the junction. Experiments confirmed his
analytical calculations, and Josephson was awarded the 1973 Nobel Prize in Physics
for his work. Since then, theJosephson effectsthat describes the flow of a supercurrent
through a tunnel barrier, have been a subject of considerable research studies.

In a Josephson junction, i.e. a system of superconductors separated by barrier(s),the
nonsuperconducting barrier separating the two superconductors must be very thin. If
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1 Josephson junctions and sine-Gordon equations: an Introduction

the barrier is an insulator, it has to be on the order of 30 Å thick or less. If the barrier
is another metal (nonsuperconducting), it can be as much as several microns thick.
Until a critical current is reached, a supercurrent can flow across the barrier without
a voltage difference. This is known as theDC Josephson effect. When a constant
voltage is applied across the junction, the supercurrent will oscillate in time which is
known as theAC Josephson effect. The oscillation frequency of this AC voltage is
nearly 500 GHz per mV across the junction.

Detecting and measuring the change from one state to the other is at the heart of the
many applications for Josephson junctions.

The macroscopic explanation of this process starts with thewavefunction1 that char-
acterizes all Cooper pair that can be expressed as

Ψ = n1/2
s exp(iθ), (1.1.1)

wherens is twice the density of Cooper pairs andθ is the internal phase of the elec-
trons. IfΨ1 andΨ2 are the wavefunctions of the first and second superconductors,
linearly coupled Schrödinger equations give the two basicequations which describe
the Josephson effects

Is = Im sinφ,
dφ
dt
=

2π
Φ0

V. (1.1.2)

HereIm, V, andφ are the maximum direct supercurrent through the junction, the elec-
trical voltage across the junction, and the phase difference of the wavefunctions, re-
spectively, andΦ0, which equals 2.068×10−15Wb, is the magnetic flux quantum. The
first and second equation of (1.1.2) are referred to as the aforementioned DC and AC
Josephson effect, respectively.

Apart from this discussion on Josephson junctions, an important break-through in
the study of superconductivity has been made by Johannes G. Bednorz and Karl A.
Müller who received the Nobel Prize in Physics in 1987. Ceramic materials which are
expected to be insulators, were discovered in 1986 by Bednorz and Müeller to be su-
perconductors only at a transition temperature of 35 K [6]. The material they studied
was lanthanum-barium-copper-oxide La2−xBaxCuO4 ceramics. Before the mid 1980s,
superconductivity had only been observed in metals and metallic alloys that had been
cooled below 23 K. Soon after the discovery of Bednorz and Müller, the supercon-
ductive transition temperature was improved rapidly as is shown in Fig. 1.1. This
−together with other anomalous properties of ceramic superconductors− has lead to
the differentiation of superconductors in two classes: low- and high-critical tempera-
ture (Tc) superconductors.

In low-temperature superconductors the electrons pair together so that their total or-
bital angular momentum is zero−a so-calleds-wave state. In high-temperature super-
conductors, on the other hand, the pairs are in a so-calledd-wave state, a superposition
of states in which the angular momentum is non-zero. Thisd-wave symmetry has been

1 Rather than saying that a particle has a specified position and momentum, one instead de-
scribes it by a wavefunction which is a function of all coordinates and of time. The quantity |Ψ|2 has
an important physical interpretation: it is related to the probability that electrons can be found in a
particular region of space at a particular time instant.
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1.1. JOSEPHSON JUNCTIONS WITH PHASE SHIFT

Figure 1.1: Development of the superconducting transition temperature after the discovery of
the phenomenon in 1911. This figure is taken from [7].

verified only recently by elegant experiments. Theoretically, these superconductors
have been recognized to have an unconventional symmetry of theorder parameter2.

With this unconventional symmetry of the order parameter, the superconducting phase
θ of the wave function (1.1.1) is anisotropic and exhibitsπ-difference at the perpen-
dicular direction inthe momentum space.

To know about momentum space, we need to notice that electrons in a crystal display
wavelike properties, and can be described using a wave vector k that has components
kx, ky, andkz. We can consider the overall distribution of electrons by representing
each electron ink- or momentum-space.

The crystal structure of the family of the high-Tc superconductors has unit cells with
the same size along thex- andy-crystal direction but a different size along thez-axis.
Along thisz-crystal direction, the unit cell has a larger dimension. The superconduc-
tivity is then supposed to be localized in thex − y plane, leading to the termlayered
superconductor.

One commonly and widely used material of a layered structureis yttrium-barium-

2 An order parameter is defined to quantify how much ’order’ is present in a material (see [10]).
In superconductivity, this order parameter is proportional to the wavefunction.
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1 Josephson junctions and sine-Gordon equations: an Introduction

copper-oxide YBa2Cu3O7 that is superconductive below 98 K. This material was
found by the research group of Maw-Kuen Wu and of Paul C. W. Chu[8]. In Fig.
1.2, we present a sketch of the atomic structure of this material where the unit cell is
larger in the vertical direction than in the horizontal ones.

Figure 1.2: Illustration of the crystal structure of yttrium-barium-copper-oxide ceramics mate-
rials. One can notice that the unit cell in the vertical and horizontal direction are not equal. This
is why the supercurrent flow in the vertical direction feels resistance and the materials can then
be considered to be superconducting layers separated by barriers.

Using the above description of the momentum space and the layered structure of high-
Tc superconductor, thes-wave andd-wave state ink-space is illustrated in the pictures
in Fig. 1.3 (see [9]).

If one replaces one of the (s-wave) superconductors in Josephson junctions with ad-
wave superconductor, then there can occur an intrinsicπ-phase shift in the Josephson
junction, as is depicted in Fig. 1.3(b). If the negative lobeof the order parameter of
thed-wave superconductor in one side of the junction overlaps with the positive lobe
of the order parameter of thes-wave superconductor in another side of the junction,
then aπ-junctionis formed.

The connection of the two superconductors by such an arrangement does not, by itself,
lead to any special phase difference, because the phases of the order parameters on
both sides simply arrange themselves to minimize the Josephson energy,∼ cos (φ + π),
by setting the phase differenceφ equal toπ. It merely relates to a phase change in one
of the two superconductors, e.g.φ1→ φ1+π. Hence, whether a junction is aπ-junction
or not is only a matter of convention. Therefore, to get aπ-junction, the junction has
to be made in certain way such that there is no way to minimize the energy in all parts
of the junction. This condition can be achieved by several ways. One is by making

8
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(a)

(b)

Figure 1.3: (a) Illustration of thes-wave andd-wave order parameter in the momentum space.
(b) Josephson junction betweens-wave andd-wave. This corresponds to aπ-junction because
of the phase-shift of the phase difference byπ. The negative lobe of thed-wave superconductor
meets the positive one of thes-wave.

multiply connected superconducting systems (see [11]). InFig. 1.4, we sketch this
configuration of three superconducting segments forming a loop with three junctions.

The arrangement is chosen so that all junctions areπ-junctions by our definition. We
can now think of the above process (φ1 → φ1 + π) to one of the segments to convert
its adjacent junctions into 0-junctions and leaving oneπ-junction only. There is no
further transformation to remove the remainingπ-junction without changing one of
the two 0-junctions again into aπ-junction. Hence there is no way to minimize the
energy of all junctions. This meansfrustationfor the loop.

Another way of making aπ-junction is by constructing a junction such that the wave
function of the conventional superconductor overlaps simultaneously with a part of
the unconventional superconductor wave function with positive sign as well with a
part with negative sign. The best-known junction for this configuration is the corner
junction [9, 12, 13] (see Fig. 1.4(b)). In Fig. 1.5(a), we present an optical microscope
picture of a zigzag junction which consists of several corner junctions.

Recently, several procedures for making aπ-junction have been proposed and con-
firmed experimentally. One can fabricate junctions which are formed at the boundary
between two crystalline films of cuprate superconductors with different orientations
[14] or Josephson junctions with a ferromagnetic barrier [15, 16]. The most recent
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1 Josephson junctions and sine-Gordon equations: an Introduction

120o

(a)

(b)

Figure 1.4: (a) Superconducting loop with three junctions and (b) a corner junction between
s-wave andd-wave superconductor.

technology is by using a pair of current injectors which are placed close to each other
[17] as shown in Fig. 1.5(b). With this latest procedure, onecan introduce an arbitrary
phase shift to Josephson junctions. For a successful operation, both∆x and∆w (see
Fig. 1.5(b)) must be much smaller than the Josephson penetration depthλJ.
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1.2 Sine-Gordon equations

(a)

(b)

Figure 1.5: (a) An optical microscope image of a zigzag junction which consists of several
corner junctions. The junction is made by a high-Tc superconductor YBa2Cu3O7−δ and low-
Tc superconductor Nb, separated by Au. Courtesy of Ariando. (b) An optical image of an
ordinary long Nb-AlOx-Nb junction with two injectors. This junction can produce afractional
flux quantum. The figure is taken with permission from [17].

1.2 Sine-Gordon equations

The phase difference between two superconductors forming a Josephson junction
satisfies the following sine-Gordon equation (see, e.g. [18]):

φxx− φtt = sin(φ + θ) (1.2.1)

for an ideal long Josephson junction or

φn+1 − 2φn + φn−1

a2
− φn

tt = sin(φn + θn) (1.2.2)

for an array of short Josephson junctions wherea is the coupling constant between
two consecutive lattices andn numbers the sites. The parameterθ(x) or θn represents
the phase shift, which is constant for the continuous and thediscrete sine-Gordon
equation.

11



1 Josephson junctions and sine-Gordon equations: an Introduction

The sine-Gordon equation, Eq. (1.2.1) withθ ≡ 0, was originally considered by En-
neper [19] in the differential geometry of surfaces of a constant negative Gaussian
curvature.

To name a few applications as physical models, besides the aforementioned descrip-
tion of superconductivity and long Josephson junctions, the sine-Gordon equation also
appears in the study of simplified dislocation models where kinks and breathers were
first noticed by Seeger and co-workers [20]. Independently,Perring and Skyrme [21]
used this equation as a simple one-dimensional model of the scalar field theory mod-
eling a classical particle. One of the simplest macroscopicmodels describing the dy-
namics of the discrete sine-Gordon equation, i.e. Eq. (1.2.2) with θn ≡ 0, is a system
consisting of a chain of pendula with each pendulum being connected to its neigh-
bors by elastic springs [22, 23]. For a rather complete review, the reader is referred to
[24, 25].

One of the elementary solutions of the completely integrable sine-Gordon equation
which plays a major role in the study of Josephson junctions is thetopological soliton
solution

φ(x, t) = 4 tan−1 exp[σ(x− vt)/
√

1− v2], σ = ±1. (1.2.3)

Here, we define atopological chargeas a conserved quantity that is equal to the dif-
ference between the phase atx = +∞ andx = −∞. The topological charge of solution
(1.2.3) is then 2πσ. The solution (1.2.3) is called akink andantikink in caseσ = +1
andσ = −1, respectively. In Josephson junction systems, this (anti)kink represents a
vortex of supercurrent that creates a magnetic field with theflux that is equal to the
magnetic quantum±Φ0 = 2.068× 10−15 Wb. Therefore a sine-Gordon (anti)kink is
also called an(anti)fluxon. Several expectations on Josephson junctions to be indus-
trially applicable and usable in the future are due to this solitonic solution.

The interesting aspect of a Josephson junction with phase shifts [θ , 0 in Eqs. (1.2.1)
and (1.2.2)] is the spontaneous appearance of fractional flux quanta. This strength-
ens the possibility for quantum information processing applications using fractional
vortices. This type of ground state by all means has different characteristics from the
elementary solutions of Eq. (1.2.1) withθ ≡ 0 (mod 2π). Nonetheless, only a few
theoretical studies have been devoted to an investigation of such a ground state as will
be listed below.

Bulaevskii, Kuzii, and Sobyanin [26] were the first who analyzed the Josephson sys-
tem with magnetic impurities and predicted the possibilityfor aπ-phase shift as well
as the presence of spontaneous magnetic flux. After that work, up to the end of the
year 2000, there are only few works considering specificallyfractional flux quanta
from a theoretical and mathematical point of view. To our best knowledge, those ar-
ticles are [27, 28, 29, 30, 31, 32, 33] for discussions on long0-π Josephson junctions
and [34] for tricrystal grain boundaries. For list of reports on experimental results, the
reader is referred to [14] and references therein. Equations (1.2.1) and (1.2.2) then
opens a new field with open problems.
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1.3 Outline of the thesis

1.3 Outline of the thesis

Motivated by the above description, this thesis is made as a contribution toward
the understanding of characteristics of fractional fluxons. It is presented as a collection
of scientific articles in such a way that the chapters can be read separately.

In Chapter 2, we show and discuss the existence of fractionalfluxons in a Josephson
system with phase shifts. We exploit phase plane analysis toshow existence of the
semifluxon states. This method is applicable to the present study because (stable)
fractional fluxons in the steady state are independent of time. Using this very basic
procedure, we already can answer some important questions addressed by previous
authors, such as the presence of a critical bias current above which there is no static
semifluxons [29] and the presence of a minimum distance between two consecutive
phase shifts needed to have fractional fluxons [31]. Using the phase portrait analysis,
it is also shown that there exists some unusual solutions representing different type of
fractional fluxons. These types of fractional vortices are predicted to be unstable.

In Chapter 3, we study a 0-π array of short Josephson junctions. We study the case of
Josephson systems with one phase shift. A possible implementation of the problem
in experiments using the present technology is also mentioned. The main issue of
this chapter is the existence and stability of latticeπ-kinks. Stability of the solutions
obtained in the previous chapter, which are the strong coupling limit of latticeπ-kinks,
is also discussed.

In Chapter 4, we consider the so-called tricrystal junctions. An infinite long 0-π
Josephson junction can be considered as a combination of twosemi-infinite 0- and
π- junctions. A tricrystal junction is then a combination of three semi-infinite long
Josephson junctions having one common point. This type of junctions has promising
applications, e.g., as logic device based on the Josephson effect for high-performance
computers. In a tricrystal junction system, a fluxon coming toward the common point
can be trapped. We also discuss whether the common point can trap more than one
fluxon. If one of the junctions is aπ-junction, it is shown that a semifluxon is stable for
any combination of the Josephson characteristics and it is analyzed whether the sys-
tem supports a multi-semifluxon state. The minimum number ofJosephson junctions
forming a star-like multicrystal junction that supports a multiple-semifluxons state is
also discussed.

In Chapter 5, we consider a Josephson junction system with phase shifts ofκ, with
κ is not necessarilyπ as is the case in the foregoing chapters. This system is not
as trivial as it might look, especially because a fractionalkink can have a different
topological charge from the corresponding fractional antikink. In this chapter we
consider a long Josephson junction with one single phase shift and one with periodical
phase shifts. For one phase shift, the stability of fractional kinks supported by the
system is analyzed. For a periodic structure, the band gap spectrum of fractional kinks
is studied.
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Static semifluxons of a Josephson junction with

π-discontinuity points





Chapter 2

We investigate analytically a long Josephson junction withseveral π-
discontinuity points characterized by a jump ofπ in the phase difference of
the junction. The system is described by a perturbed-combined sine-Gordon
equation. Via phase-portrait analysis, it is shown how the existence of static
semifluxons localized around the discontinuity points is influenced by the ap-
plied bias current. In junctions with more than one corner, there is a minimum
facet-length for semifluxons to be spontaneously generated. A stability analysis
is used to obtain the minimum facet-length for multi-cornerjunctions.

2.1 Introduction

Superconductors are characterized by the phase coherence of the Cooper pair con-
densate. Recent technological advances in the control of the phase near a Joseph-
son junction have promoted research on the manipulation andphase biasing of such
junctions. Examples are the experimental realization of Superconductor-Ferromagnet-
Superconductor (SFS)π-junctions [1], and Superconductor-Normalmetal-Superconductor
(SNS) junctions in which the charge-carrier population in the conduction channels is
controlled [2]. These junctions are characterized by an intrinsic phase-shift ofπ in the
current-phase relation or, in other words, an effective negative critical current.

An alternative branch of phase biasing is offered by the intrinsic anisotropy of un-
conventional superconductivity. A predominantdx2−y2 pairing symmetry in high-Tc

superconductors [3] enables the possibility to bias parts of the circuit with a phase of
π. Examples are theπ-SQUID [4, 5], tricrystal rings [3], the corner junction [6], and
the zigzag junction [7]. The latter two inspired the analytic investigation in the present
work. These structures, of which neighboring facets in a Josephson junction can be
considered to have opposite sign of the critical current, present intriguing phenom-
ena such as the intrinsic frustration of the Josephson phaseover the junction and the
spontaneous generation of fractional magnetic flux near thecorners. The fractional
fluxes are attached to the discontinuity points and are formed in antiferromagnetic or-
dering. This ordering has indeed been found experimentallyas the ground state of
YBa2Cu3O7-Nb zigzag junctions [8, 9] as shown in Fig. 2.1.

The presence of a fractional flux, or semifluxon, has been considered before by sev-
eral authors [8, 10, 11, 12, 13, 14, 15]. In this work we present an analytic investiga-
tion of the existence and behavior of these semifluxons in an infinitely long Joseph-
son junction withπ-discontinuities. We will introduce the model for these junctions
and the method we use to analyze the semifluxons in a Josephsonjunction with π-
discontinuities in Section 2.2. In Section 2.3 the results for oneπ-discontinuity, the
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2 Static semifluxons of a Josephson junction with π-discontinuity points

Figure 2.1: A scanning SQUID microscope image of fractional magnetic flux in a system of
YBa2Cu3O7-Au-Nb zigzag junctions. The picture is taken from [9] with permission of the
authors.

corner junction, is presented. Section 2.4 discusses the case for twoπ-discontinuities,
in which we compute the minimum facet length between the discontinuity points nec-
essary to be able to spontaneously generate flux. In Section 2.5, it is shown how
the model is extrapolated to an increasing number of discontinuities in the infinitely
long Josephson junction. We use a stability analysis to discuss the existence of the
semifluxons for this case. We conclude the work in Section 2.6.

2.2 Mathematical model and phase-plane analysis

To describe the dynamics of a long Josephson junction withπ-discontinuity points
a perturbed sine-Gordon equation is used [10]:

φxx− φtt = sin[φ + θ(x)] − γ + αφt, (2.2.1)

whereα is a dimensionless positive damping coefficient related to quasi-particle tun-
neling across the junction andγ is the applied bias current density, normalized to the
junction critical current densityJc. The functionθ(x) takes the value 0 orπ, represent-
ing the alternating sign of the critical current associatedwith the presence, or absence,
of the additionalπ-phase shift.

Equation (2.2.1) is written after rescaling where the spatial variablex and time vari-
ablet are normalized by the Josephson penetration lengthλJ and the inverse plasma
frequencyω−1

p respectively.

We consider static semifluxons, hence (2.2.1) reduces to

φxx = −
∂U
∂φ

, (2.2.2)
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2.3 Junctions with a single π-discontinuity point

whereU = −(1− cos[φ + θ(x)]) + γφ. For physically meaningful solutions,φ andφx

are required to be continuous at the discontinuity point.

The first integral of Eq. (2.2.2) is

1
2
φ2

x = − cos[φ + θ(x)] − γφ +C, (2.2.3)

whereC is the constant of integration. Ifθ would not depend onx, then the integral
curves (’orbits’) of (2.2.3) form thephase portraitin the (φ, φx) phase plane.

Phase-plane analysis is particularly useful for the qualitative analysis of planar differ-
ential equations, see for instance [16, 17] for an example involving a perturbed sine-
Gordon equation. For a general introduction to phase-planeanalysis see for instance
[18].

In the present situation however,θ does depend onx, but in a special manner:θ takes
only two values. Therefore there are two phase portraits that come into play, one with
θ = 0 and another one withθ = π. Solutions of (2.2.2) are suitable combinations
of orbits on these two phase planes. The position where the switch is made between
the two phase planes is determined by the values ofx whereθ jumps. With this
convention in mind we will for simplicity speak aboutthephase portrait of (2.2.2). A
similar approach is used by Walker [15] to analyze a particular solution of Eq. (2.2.2)
representing semifluxons in the case ofγ = 0. In his paper, Walker analyzes this
situation using a combination of the potential functionsU, i.e. U = −(1− cosφ) and
U = (1− cosφ).

2.3 Junctions with a single π-discontinuity point

In a junction with a singleπ-discontinuity point, under certain conditions, a semi-
fluxon is expected to be generated [3]. Withθ(x) given by

θ(x) =


0, x < 0,

π, x > 0,
(2.3.1)

the parameterization of this semifluxon forγ = 0 is [10, 12]:

φ(x) =


4 arctan exp (x− x0), x < 0,

4 arctan exp (x+ x0) − π, x > 0,
(2.3.2)

wherex0 = ln (
√

2+ 1). In the phase plane, the solution (2.3.2) is given by the com-
bination of the curves with arrows in Fig. 2.2. Forx < 0 we follow the solid curve
starting at the origin up tod1, wherex = 0. Fromd1 we switch flows and follow
the dashed curve forx > 0 up to (φ/π, φx) = (1, 0). This defines a semifluxon with
a π-phase jump:φ(∞) − φ(−∞) = π. The intersection of the trajectories forx < 0
and forx > 0 makes an angle, i.e.is transversal, which guarantees the persistence of
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2 Static semifluxons of a Josephson junction with π-discontinuity points

Figure 2.2: The phase portrait of the system (2.2.2) forγ = 0. The trajectories forx < 0 are
indicated with bold lines, the trajectories forx > 0 with dashed lines. Any orbit of Eq. (2.2.2)
switches atx = 0 from bold to dashed. The semifluxon parameterized by (2.3.2)in the phase
plane is indicated with arrows withd1 is the corresponding position ofx = 0. O is the position
of (0, 0). The definition ofd1, n1 − n4 are in the text.

the semifluxon when a bias current is applied. Later on it willbe shown that this will
remain the case up toγ = 2/π.

In the phase plane, equilibria are the points that correspond to the maxima and min-
ima of the potentialU, i.e. (∂U/∂φ = 0, φx = 0). Whenγ = 0 two adjacent equilibria
are connected by heteroclinic connections. Once we setγ , 0, the heteroclinic con-
nections break and form homoclinic connections, i.e. connections between an equilib-
rium with itself. This opens the possibility for other solutions satisfying Eq. (2.2.2)
and boundary conditionφ(∞) − φ(−∞) = π than the semifluxon solution described
above. As shown in Fig. 2.3, a semifluxon can be constructed bychoosingd2 or d3

as the point wherex = 0. With these two discontinuity points, we obtain solutions
with an overall phase jump ofπ, but containing humps as shown in Fig. 2.4. For
γ = 0 these constructions are not possible since the trajectories would pass through an
equilibrium.

The semifluxons with humps can be viewed as combinations of semifluxons and 2π-
fluxons. The semifluxon withd2 as the position ofx = 0 consists of a semifluxon and
a fluxon-antifluxon pair, while the semifluxon withd3 for the corresponding position
of x = 0 consists of a semifluxon and a fluxon with opposite polarity.Because a fluxon
and a semifluxon with opposite (like) polarity are attracting (repelling) each other, we
can expect these semifluxons to be unstable. A further study of these semifluxons with
humps will be presented elsewhere1.

When increasing the normalized bias currentγ, the homoclinic connections of the

1 see Chapter 3 of this thesis.
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2.3 Junctions with a single π-discontinuity point

Figure 2.3: The phase portrait of the system (2.2.2) forγ = 0.1. For simplicity we only show
the stable and unstable manifolds of the fixed points. Instead of d1, we might also taked2 or d3

for the position ofx = 0.

two equations will shrink and move apart. Therefore, for a certain value ofγ, which
we will denote asγ∗, d2 andd3 will coincide (see Fig. 2.5). When this happens, the
solution withx = 0 atd2 corresponds to a semifluxon and a fluxon-antifluxon pair at
infinity. For γ > γ∗, there is no solution withx = 0 at d2 that satisfies Eq. (2.2.2).
Hence, onlyd1 andd3 can be used for the position ofx = 0, in that case.

To deduce the exact expression ofγ∗, we consider the boundary conditions for the
phase difference and magnetic flux at infinity

limx→−∞ φ(x) = φ− = arcsin(γ),

limx→∞ φ(x) = φ+ = π + arcsin(γ),

limx→±∞ φx(x) = 0.

From the boundary conditions, the integral constantC of Eq. (2.2.3) is:

C =


cosφ− + γφ−, x < 0

− cosφ+ + γφ+, x > 0.
(2.3.3)

Imposing thatφx(0−) = φx(0+) andφ(0) = π+arcsinγ, we obtain the value ofγ which
gives the above condition

γ∗ =
2√

4+ π2
≈ 0.54. (2.3.4)

Whenγ > γ∗, the pointd3 moves towardsd1. At a certain value, the pointsd1 and
d3 coincide. At that value ofγ, the intersection of the trajectories of the system for
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2 Static semifluxons of a Josephson junction with π-discontinuity points
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Figure 2.4: Plot of the phase as a function ofx (in units ofλJ) with d2 andd3 as discontinuity
points. In this pictureγ = 0.1. The solution with higher hump is the phase withd2 as the
discontinuity point. Dash-dot lines are the asymptotes of the solutions.

x < 0 andx > 0 is tangential. The heteroclinic flow of the combined phase portrait is
’smooth’ (see Fig. 2.6). We then arrive at the edge of the static solution because as the
trajectories intersect nontransversally, perturbationsmake them either nonintersecting
or transversally intersecting [19]. We will call the value of γ such that the intersection
is nontransversal thecritical current γc. Physically, if we apply a bias current larger
than this critical current, there will be no static semifluxon anymore.

A tangential intersection is achieved when at pointd1 = d3,

lim
x↑0

∂φx/∂φ = lim
x↓0

∂φx/∂φ.

Noticing that∂φx/∂φ is given by

dφx(x)
dx

dx
dφ(x)

∣∣∣∣∣
x=0
=
φxx

φx

∣∣∣∣∣
x=0
=
± sinφ − γ

φx

∣∣∣∣∣
x=0

,

this condition is satisfied when sinφ(0) = 0, i.e. φ(0) ∈ {0, π}.
To obtain the value ofφx at x = 0, we use that

∫ 0

−∞
φxxφx dx=

∫ 0

−∞
φx sinφ − γφx dx, (2.3.5)

which gives

1
2
φx(0−)2 = − cosφ(0−) +

√
1− γ2 − γ(φ(0−) − arcsinγ).

Hereφ(0−) is a shorthand for limx↑0 φ(x) and likewise forφx(0−). Limits from the right
are indicated by a ’+’.
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2.4 Junctions with two π-discontinuity points

Figure 2.5: Part of the phase portrait of (2.2.2) forγ = γ∗. At this value ofγ d2 andd3 coincide.

The same calculation forx > 0 gives

−1
2
φx(0

+)2 = − cosφ(0+) −
√

1− γ2 − γ(−φ(0+) + π + arcsinγ).

Becauseφ(0−) = φ(0+) = φ(0) andφx(0−) = φx(0+), the two above expressions yield
the critical current for the existence of static semifluxons:

γc =
2
π
≈ 0.64. (2.3.6)

No static solutions exist forγ aboveγc. This result is in agreement with the result of
Kuklov, Boyko, and Malinsky [20] that forγ > γc theφ-fluxon changes the circulation
back and forth while releasing 2π-fluxons. Using phase-plane analysis, we derive
the maximum supercurrent from the existence of the static solution while Kuklov et
al. derive it from the stability of the solution.

2.4 Junctions with two π-discontinuity points

The analytical discussion on junctions with twoπ-discontinuity points has been
initiated by Kato and Imada [14]. The junctions have a positive critical current for|x| >
a and a negative critical current for|x| < a. In this system there are two semifluxons
with opposite polarity generated at the corners of the junction whena is relatively
large. They conjecture that the magnetic flux is sensitive tothe ratioa = d/2λJ

whered is the distance of the two corners. We call the normalized distance of one
corner to the next neighboring corner the normalized facet length, which is 2a in our
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2 Static semifluxons of a Josephson junction with π-discontinuity points

Figure 2.6: The phase portrait of the system corresponding to theπ kink solution forγ the
critical current.

case. Here, we consider the case when the semifluxons generated at the corners have
opposite polarity.

Kato and Imada show numerically that the integrated magnetic flux, which is propor-
tional to∆φ = |φ(0)− φ(∞)|, depends ona (see Fig. 2.7). Whena � 1, they obtain
∆φ = π. The magnetic flux decreases when the facet length reduces. In the absence
of a bias current, fora ≤ a(2)

min = π/4,∆φ = 0. Here 2a(2)
min is the minimum facet-length

necessary to have a spontaneous flux generation whenγ = 0 (the superscript indicates
the number of corners). The minimum facet-length forγ , 0 will be shown to be zero
later on. In this section, we will show that the dependence of∆φ ona can be expressed
explicitly when looking for the existence of the static semifluxons.

The phase portrait of the system without an applied bias current is given in Fig. 2.2.
The semifluxon-antisemifluxon and the antisemifluxon-semifluxon states are repre-
sented by the trajectoryO−n1−n2−O andO−n3−n4−O, respectively. As 2a is the
length of the middle junction, it is the pathlength ofn1 → n2 or n3 → n4. If x would
be replaced byt, as in the usual pendulum equation, it would be the time needed to go
from n1,3 to n2,4.

Let Mp be the closed trajectory through pointsn1 andn2. This flow represents the pe-
riodic motion of the pendulum equation.Mp crosses theφ-axes at the points (±∆φ, 0).
Puttingγ = 0, from Eq. (2.2.3)Mp is implicitly given by the relation

1
2
φ2

x = cosφ − cos∆φ. (2.4.1)

If n1 = (φit , φit
x), thenφit = arccos(cos∆φ + 1

2φ
it
x

2).
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2.4 Junctions with two π-discontinuity points

(a)

(b)

Figure 2.7: ∆φ is drawn as a function ofa. The critical currentfc for vortices to change their
orientation is also presented. The figure is reproduced withpermission from [14].

The unstable and stable manifolds throughn1 andn2 are given by

1
2
φx

2 = 1− cosφ. (2.4.2)

Hence,φit can be written as

φit = arccos
[
(cos∆φ + 1)/2

]
. (2.4.3)

Now, it is straightforward to calculate the pathlength fromn1 to (∆φ, 0) which is ex-

29



2 Static semifluxons of a Josephson junction with π-discontinuity points

actly a. Using (2.4.1), we get

a =
∫ ∆φ

φit

dϑ√
2(cosϑ − cos∆φ)1/2

=

∫ ∆φ

0

dϑ√
2(cosϑ − cos∆φ)1/2

−
∫ φit

0

dϑ√
2(cosϑ − cos∆φ)1/2

.

(2.4.4)

Now consider

I =
∫ φit

0

dϑ√
2(cosϑ − cos∆φ)1/2

.

Using identity cosϑ = 1− 2 sin2(ϑ/2), the integral becomes

I =
1
2

∫ φit

0

dϑ

sin(∆φ/2)
√

1− csc2(∆φ/2) sin2(ϑ/2)
.

If we let sin(ϑ/2) = sin(∆φ/2) sinΦ such that the angleϑ is transformed toΦ =
arcsin(sin(ϑ/2)/ sin(∆φ/2)), the integral then becomes

I =
∫ Φit

0

dΦ

(1− k2 sin2Φ)1/2
= F(Φit , k)

with k = sin ∆φ2 andΦit = arcsin(sinφ
it

2 /sin ∆φ2 ). The functionF is the incomplete
elliptic integral of the first kind [21]. Hence, we get that

a = F(π/2, k) − F(Φit , k). (2.4.5)

This is the explicit relation between∆φ anda whenγ = 0. The plot is shown in
Fig. 2.7. With this expression, we can see that

lim
∆φ→0

a = π/4

becausek→ 0 andΦit → π/4. This value is the minimum pathlength fromn1,3 to n2,4

at the limiting pointO, which is then the minimum facet-length to have a semifluxon-
antisemifluxon or an antisemifluxon-semifluxon at the corners.

An approximation to Eq. (2.4.5) for the facet lengtha close to the minimum facet
lengthπ/4 has been calculated by Kato and Imada [14] using Hamiltonian energy
approximation.

Kato and Imada assume that whena = π/4+ ε with 0 < ε � 1, the antisemifluxon-
semifluxon state is approximately given byφ = C0ϕ0 with

ϕ0(x) =



√
4

π + 4
cosx (|x| < a),

√
4

π + 4
cosa e−(|x|−a) (|x| > a).

(2.4.6)
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2.4 Junctions with two π-discontinuity points

The multiplication constant
√

4/(π + 4) is obtained from the normalization condition
such that the norm ofϕ0 is one. Note that this expression is exact whenε = 0. One
can also notice that∆φ =

√
4/(π + 4)C0.

To determineC0, they derive an effective Hamiltonian forC0 by substitutingφ(x) =
C0ϕ0(x) and (2.4.6) to the Hamiltonian energy

H =
∫ ∞

−∞

(
1
2
φ2

x + cos[θ(x)](1 − cosφ) + fφ

)
dx. (2.4.7)

By assuming thatC0 is small, a simple calculation gives

H = −
λ2

0

2
C2

0 +
π + 2

8(π + 4)2
C4

0 −
√

32
π + 4

γC0 (2.4.8)

to the fourth order ofC0. Here,λ2
0 = 4ε/(π + 4).

Finally, by minimizing (2.4.8) as forC0 and takingγ = 0 one obtains [14, 22]

∆φ =

√
64
π + 2

(a− π/4)1/2.

When we start applying a bias current to the junction, a vortex and an antivortex are
created at the corners even though the facet length is less than the minimum facet-
length forγ = 0. In other words, the minimum facet-length of the junction is 0 when
γ , 0. In the phase portrait, this can be seen from the fact that the equilibria of the
system forx < 0 do not coincide with the ones forx > 0 whenγ , 0, see Fig. 2.8. In
the presence of the applied bias current, the magnetic flux∆φ is also influenced byγ.
There are two different cases of the behavior of the semifluxons under the influence of
a bias current. In the following, we will discuss the two cases separately.

2.4.1 Antisemifluxon-semifluxon case

When we start with a pair of antisemifluxon-semifluxon which we will here call
a φ2-solution, there is a critical value of the applied bias current to reorient the solu-
tion such that it becomes a semifluxon-antisemifluxon, here called aφ1-solution. The
flipping-over from theφ2-solution to theφ1-solution has been discussed analytically
in [14, 22]. For simplicity fc is used to denote the critical bias current as in [14]. In
Fig. 2.7, fc is drawn as a function ofa. It is natural to expect that one would be able
to explain the flipping-over process using phase-plane analysis. A sketch of the phase
portrait of the system forγ , 0 is drawn in Fig. 2.8.

Whenγ , 0, the originO splits intoO− (an equilibrium of the system forx < |a|) and
O+ (an equilibrium of the system forx > |a|). The minimum facet-length to have a
φ2-solution forγ , 0 now is given by the pathlength ofn3-n4. These points lie on the
unstable and stable manifolds of the system forx > |a|. The flipping process happens

31



2 Static semifluxons of a Josephson junction with π-discontinuity points

Figure 2.8: The phase portrait of Eq. (2.2.2) whenγ = 0.4.

because the minimum facet-length to obtain aφ2-solution for a positive bias current
increases whenγ increases.

Therefore, given the facet length, increasingγ we arrive at a level of the bias current
where theφ2-solution ceases to exist, and the solution will switch to solution of type
φ1. In Fig. 2.8, theφ1-solution corresponds to the curveO+-n1-n2-O+. Hence,fc(a)
also shows the minimum facet-length to have an antisemifluxon-semifluxon state for
given positiveγ.

One might guess already that the boundary of the existence ofthis solution is when
the circle containingn3 andn4 makes nontangential intersection with the separatrices
(see Fig. 2.8). But, this is not the case since the arc-lengthdistance fromn3 to n4 is
not a monotonous function of∆φ for a nonzeroγ. The arc-length fromn3 to n4 in the
condition illustrated by Fig. 2.8 is not the minimum. Numerical result of the critical
current fc as a function of the facet lengtha is shown Fig. 2.9. Using Hamiltonian
energy approximation, Kato and Imada [14] has calculated anapproximation to the
curve as

fc =
128

27(π + 2)
(a− π/4)3/2.

This value of fc is evaluated as the critical value where one of the minima of (2.4.8)
disappears.

2.4.2 Semifluxon-antisemifluxon case

When we start with a semifluxon-antisemifluxon state, with a positive current as
long as the bias current is less than 2/π, the static semifluxons are attached at the
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Figure 2.9: Plot of the critical currentγc as a function of half facet lengtha.

corners for any facet length. Ifγ > 2/π there is a limiting value ofa, sayam(γ),
such that fora > am there is no static semivortex-antisemivortex state.am depends
monotonically onγ which means that we can determine the critical currentγc for
givena. With a certain value ofa andγ > γc, there is no static vortex-antivortex state.
The plot of the relation betweena andγc is presented in Fig. 2.9.

When the static solutions disappears, the solution becomestime dependent and starts
flipping between the two types of semifluxons (the vortex-antivortexand the antivortex-
vortex) while releasing 2π-fluxons.

The difference betweenγc and fc is that the applied bias current ofγc is the minimum
value of the current to pull the two semifluxons apart whilefc is the minimum current
to collide the two semifluxons. This can be seen from the Lorentz force induced by
the applied bias current. In the limita→ ∞, bothγc and fc converge to 2/π.

2.5 Junctions with multiple π-discontinuity points

In [23], Goldobin et al. consider multi-corner junctions. One of the problems they
consider is to determine the minimum length such that semifluxon states do exist for
γ = 0. They have shown numerically that the minimum length varies as a function
of the number of discontinuity points. In this section, we discuss the question of
determining the minimum facet-lengtha(N)

min for semifluxons in a junction withN π-
discontinuity points analytically. Recall thata(N)

min denotes the minimum facet-length
in absence of a bias current. All the facet lengths are assumed to be equal.

One should be able to use existence analysis to determine theminimum facet-length
for multi-corner junctions as we did for the case of two-corner ones, but it seems rather
difficult. Therefore we use a stability analysis of the constant solution φ ≡ 0. This
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2 Static semifluxons of a Josephson junction with π-discontinuity points

constant solution is the trivial state. The idea is mentioned in brief by Kuklov et al.
[20] and Kato and Imada [14].

Based on numerical simulations, we assume that once the trivial state is unstable indi-
cated by a zero eigenvalue that moves into the right half-plane, it creates spontaneous
semifluxons in an antiferromagnetic order. The damping is assumed to be absent,
i.e.α = 0, as it does not influence the value of the minimum facet-length.

With the above assumptions the idea of getting the minimum facet-length is by looking
at an eigenvalue at zero. The starting equation is

φxx− φtt = sin[φ + θ(x)], (2.5.1)

which is Eq. (2.2.1) withγ = α = 0. Hereγ is taken to be zero because we calculate
the minimum facet-length in absence of a bias current.

Equation (2.5.1) admitsφ0 = kπ, k ∈ Z as the trivial solutions. We then linearize about
φ0 writing φ = φ0 + v(x, t), and retaining the terms linear inv:

vxx − vtt = cos[θ(x)]vcoskπ. (2.5.2)

We now make the spectral ansatzv(x, t) = eλtu(x) which gives foru the equation

uxx− λ2u = cos[θ(x)]ucoskπ. (2.5.3)

The real part ofλ determines the stability of the trivial solution.

The boundary of the essential spectrum is given by those eigenvaluesλ for which
there exists a solution to Eq. (2.5.3) of the formu(x) = eiζx, with ζ real. It follows that
λ = ±

√
∓1− ζ2.

Note that fromλ = ±
√

1− ζ2, there is positive spectrum when|ζ | > 1. This explains
thatkπ is an unstable constant solution of the system if cos[θ(±∞)] = ±1.

With the result above, we conclude that there is no stable constant solution if cos[θ(∞)] .
cos[θ(−∞)]. It means there is no minimum facet-length of a long Josephson junction
with an odd number of corners. For any facet length, we will always obtain semi-
fluxons as the ground state that are attached at the corners with a total phase jump
|φ(∞) − φ(−∞)| = π.

Josephson junctions with an even number ofπ-discontinuity points could have a sta-
ble trivial solution. According to our assumption, we need to compute the discrete
spectrum. The stability of the trivial solution will dependon the facet length.

If we look at Eq. (2.5.3) (without loosing generality we can takek = 0), this equation
belongs to the classical scattering problem [24]. This problem has been well discussed
in quantum mechanics [25] where cos[θ(x)] is the potential function. A discrete eigen-
value is a value ofλ2 for which the corresponding eigenfunction decays exponentially
asx→ ±∞ [24].

As an example, the case of four corner junctions is considered. Notice that the facet
length is 2a. The solution of Eq. (2.5.3) with the above requirement can easily be
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2.5 Junctions with multiple π-discontinuity points

Figure 2.10: Plot of the left hand side (l.h.s.) of Eq. (2.5.6) as a function of a. The minimum
facet-lengtha(4)

min is the first intersection of the curve witha-axis.

constructed by considering that we have five regions based onθ(x), i.e.

u =



A1,2 exp(
√

1+ λ2|x|), |x| > 3a,

B1,2 cos(
√

1− λ2(|x| − 2a)) +C1,2 sin(
√

1− λ2(|x| − 2a)), 3a > x > a,

D1 cosh(
√

1+ λ2x) + D2 sinh(
√

1+ λ2x), |x| < a.
(2.5.4)

Next, we have to determine all the coefficients using the continuity conditions:u(c−) =
u(c+) andux(c−) = ux(c+), c = ±a, ± 3a. In the matrix form, the eight linear homo-
geneous equations are written as

Λ

(
A1 B1 C1 D1 D2 B2 C2 A2

)T

= 0, (2.5.5)

withΛ is the coefficient matrix. To calculate the minimum facet-length, we takeλ = 0.

The above system has nontrivial solutions only if the determinant of the coefficient
matrix vanishes. This leads to the equation

cosh2(a)(16(cos4(a) − cos2(a)) + 2)+

2 cosh(a) sinh(a) + 8(− cos4(a) + cos2(a)) − 1 = 0.
(2.5.6)

As shown in Fig. 2.10 numerically, this equation has severalsolutions. The minimum
facet-length to obtain an antiferromagnetically ordered semifluxons is the smallest
nonnegative root of Eq. (2.5.6). Then we conclude thata(4)

min ≈ 0.65 (normalized
to λJ). The next roots correspond to the minimum facet lengths of other solutions
that bifurcate from zero solution to exist. But at those minimum facet lengths, the
configurations of the semi- and antisemifluxons other than the antiferromagnetic one
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2 Static semifluxons of a Josephson junction with π-discontinuity points

are unstable. This is because the largest eigenvalue of the zero solution is already
positive.

For a six corner junction, we find in this way thata(6)
min ≈ 0.56.

These are in accordance with the results of [23] that are obtained using direct numeri-
cal simulations.

So far we have calculated some minimum facet-lengthsa(N)
min which show a depen-

dence on the number of theπ-discontinuity pointsN. The minimum facet-length itself
approaches zero as the following arguments show.

In this limiting case, we consider the scattering problem with a periodic potential.
Mathematically, we are looking for solution of the equation

uxx− λ2u = cos[θ(x)]u,

θ(x) = θ(x+ 4a).
(2.5.7)

Let us assume thatθ(x) = π for 0 < x < 2a, andθ(x) = 0 for 2a < x < 4a.

According to Bloch-Floquet theorem, the general solution of Eq. (2.5.7) is of the form
[25]

u = eiKxϕ(x),

ϕ(x) = ϕ(x+ 4a),
(2.5.8)

with K satisfyingK4a = 2nπ, (n = 0, ± 1, ± 2, . . .).

Substituting Eq. (2.5.8) to Eq. (2.5.7), we are left with an ordinary differential equation
in ϕ. The solution is described by

ϕ =


Aei(κ+−K)x + Be−i(κ++K)x, 0 < x < 2a,

Cei(κ−−K)x + De−i(κ−+K)x, 2a < x < 4a,
(2.5.9)

whereκ± =
√
λ2 ± 1. The coefficientsA, B, C andD are obtained from continuity

and periodicity conditions. With the same argument as before we get the condition

cosacosha = cosK4a

which givesa(∞)
min = 0.

The calculation ofa(∞)
min also tells us that arrays of 0-π junctions forming a loop or annu-

lar junctions containing an even number ofπ-discontinuity points have zero minimum
facet-length.

Zenchuk and Goldobin [26] also consider the same problem as well as the effect of
boundary conditions ona(N)

min if one uses finitely long zigzag Josephson junction. Using
the same method and a tricky formal expansion, one of the results they obtained is that
a(N)

min ∼ 1/
√

N for N even andN → ∞.
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2.6 Conclusions

2.6 Conclusions

We have discussed the existence of static semifluxons using phase plane analysis
in one- and two-corner junctions. We have obtained the critical value of the applied
bias currentγ above which static semifluxons are not present. By phase-plane analysis
we have also shown how to construct solutions with humps. We have not discussed
the stability of these solutions2.

For two-corner junctions, the exact relation between the magnetic flux of semiflux-
ons and the facet length has been derived. There is a minimum facet-length for a
semivortex-antisemivortex state atγ = 0.

For multi-corner junctions, the minimum facet-length of the antiferromagnetically or-
dered semifluxon statea(N)

min is determined by a stability analysis of the trivial state. For
a junction with infinitely many discontinuity points, we have shown thata(∞)

min→ 0. A
similar argumentation shows that an annular junction with discontinuity points also
have zero minimum facet-length.

2 see Chapter 3 of this thesis.
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Chapter 3

We consider a spatially non-autonomous discrete and continuous sine-Gordon
equation describing a 0-π Josephson junction. The continuous equation is a
special case of the discrete equation in the strong couplinglimit. The non-
autonomous character is due to the presence of a discontinuity point, namely a
jump ofπ in the sine-Gordon phase. The system admits a solitary wave which is
calledπ-kink and is attached to the discontinuity point. There are three types of
π-kinks. We show numerically and analytically that one of thesolitary waves
is stable and the others are unstable. Even though the largest eigenvalue of
a stableπ-kink is on the imaginary axis, one can excite it through the origin
using a constant force. There is a critical value of the constant force at which
zero is the largest eigenvalue. This critical value coincides with the critical
current for the existence of a static semifluxon. Applying a constant force above
the critical value causes nucleation of2π-kinks and -antikinks. Besides aπ-
kink, the system also admits a static3π-kink when there is no applied bias
current. This state is unstable. This3π-kink state with a−π-kink forms one of
the unstableπ-kinks for a nonzero applied bias current. In addition it is shown
that the unstableπ-kinks cannot be stabilized by the discreteness, even though
a 3π-kink is stable when the interaction is sufficiently weak.

3.1 Introduction

One important application of the sine-Gordon equation is todescribe the propa-
gation of magnetic flux (fluxons) in long Josephson junctions[1, 2]. The flux quanta
or fluxons are described by the kinks of the sine-Gordon equation. When many small
Josephson junctions are connected through the inductance of the superconductors,
they form a discrete Josephson transmission line (see Fig. 3.1). The propagation of
a fluxon is then described by the discrete sine-Gordon equation. For some materi-
als, Josephson junctions are more easily fabricated in the form of a lattice than as a
long continuous Josephson junction. In the strong couplinglimit, a discrete Josephson
junction lattice becomes a long Josephson junction.

It was proposed in the late 1970’s that a phase-shift ofπ may occur inside a Joseph-
son junction (in the sine-Gordon equation) due to magnetic impurities [3]. Recent
technological advances can impose aπ-phase-shift in a long Josephson junction us-
ing, e.g., superconductors with unconventionalpairing symmetry [4], Superconductor-
Ferromagnet-Superconductor (SFS)π-junctions [5], and Superconductor-Normalmetal-
Superconductor (SNS) junctions [6]. A junction containinga region with a phase jump
of π is then called a 0-π Josephson junction and is described by a 0-π sine-Gordon
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3 Stability analysis of solitary waves in a 0-π Josephson junction

equation. The place where the 0-junction meets theπ-junction is called a discontinu-
ity point.

A 0-π Josephson junction admits a half magnetic flux (semifluxon),sometimes called
π-fluxon, attached to the discontinuity point [7]. A semifluxon is represented by aπ-
kink of the 0-π sine-Gordon equation [8]. Later on, it was proposed [9] to have also
a latticeπ-kink by making a discrete version of Josephson junctions, i.e. a Josephson
junction array. Such lattices can be made using the technology described in [7]. The
presence of thisπ-kink opens a new field where many questions, that have been dis-
cussed in details for the sine-Gordon equation, can be addressed again to this kink.
The fact that the kink does not move in space, even in the continuum case, will give a
different qualitative behavior such as the disappearance of thezero eigenvalue (Gold-
stone mode) as will be shown later.

In this chapter we will study the continuous and discrete 0-π sine-Gordon equation,
especially the stability of the solitary waves admitted by the equation. Knowing the
eigenvalues of a kink is of interest for experimentalists, since the corresponding eigen-
functions (localized modes) can play an important role in the behavior of the kink [10].

The present chapter is organized as follows: in Sec. 3.2 we will describe the mathe-
matical model of the problem and its interpretation as a Josephson junction system.
We will describe the considered discrete system as well as several continuum approx-
imations to the discreteness. In Sec. 3.3 we consider the continuous 0-π sine-Gordon
equation that describes a long Josephson junction with one corner. We will derive
analytically the expression for aπ- and 3π-kink without external current and calculate
the stability of aπ-kink. It is shown that there is a critical value of the external force
at which the largest eigenvalue of aπ-kink is zero and above which there is no static
π-kink. In Sec. 3.3 we also show that the time-independent 0-π sine-Gordon equation
has otherπ-kink states. They are all unstable. One of theπ-kinks can be interpreted
as the continuation of a 3π-kink without external current. In Sec. 3.4 we study the
existence and stability of the solitary waves that were discussed in the previous sec-
tion in the presence of terms representing discreteness. The existence and stability of
the solitary waves in the weakly coupled limit will be discussed in Sec. 3.5. Numer-
ical calculations connecting the regions of weakly and strongly discrete system will
be presented in Sec. 3.6. In this section we confirm our analytical results using the
original discrete system. Conclusions and plans for futureresearch are presented in
Sec. 3.6.

3.2 Mathematical equation and its interpretation as juncti on model

3.2.1 Discrete 0- π sine-Gordon equation

The Lagrangian describing the phase of a 0-π array of Josephson junctions is
given by

L =
∫ ∑

n∈Z


1
2

(
dφn

dt

)2

− 1
2

(
φn+1 − φn

a

)2

− 1+ cos(φn + θn) + γφn

 dt, (3.2.1)
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Figure 3.1: A schematic drawing of a possibly fabricated0-π Josephson junction array using
ramp-type YBa2Cu3O7/Au/Nb junctions.

whereφn is the Josephson phase of thenth junction. The phase jump ofπ in the
Josephson phase is described byθn as follows:

θn =


0, n ≤ 0,

−π, 0 < n.
(3.2.2)

Equation (3.2.1) is given in dimensionless form. The spatial coordinatex as well as
the discreteness parametera are normalized to the Josephson lengthλJ, the timet is
normalized to the inverse plasma frequencyω−1

0 and the applied bias current density
γ > 0 is scaled to the critical current densityJc.

The equation of the phase motion generated by the Lagrangian(3.2.1) is then the
following discrete 0-π sine-Gordon equation

φ̈n −
φn−1 − 2φn + φn+1

a2
= − sin(φn + θn) + γ. (3.2.3)

For analytical calculations, we are interested in the case of n ∈ Z, but the fabrication
of the junction as well as the numerics is, of course, limitedto a finite number of
sites, say 2N sites. One then deals with boundary conditions. A reasonable choice
is to take a boundary condition representing in which way theapplied magnetic field
h = H/(λJJc) enters the system:

φ−N+1 − φ−N

a
=
φN − φN−1

a
= h. (3.2.4)

In the sequel we will always consider the absence of an applied magnetic field, i.e. we
will take h = 0.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

3.2.2 Various approximation to the discreteness in the cont inuum limit

There are various approximations of Eq. (3.2.3) in the continuum limita� 1 that
can be derived. For simplicity, first consider only the discrete sine-Gordon equation
for n ≤ 0

φ̈n −
φn−1 − 2φn + φn+1

a2
= − sinφn + γ. (3.2.5)

Writing φn = φ(na) and expanding the difference terms using the Taylor expansion
give

φn−1 − 2φn + φn+1

a2
= 2

∞∑

k=0

a2k

(2k+ 2)!
∂k

xxφxx(na) = Laφxx

and
φn+1 − φn

a
=

∞∑

k=0

ak

(k+ 1)!
∂k

xφ(na) = L̃aφx.

Likewise, forn ≥ 1, the continuum approximation for the equation is then given by

φtt − Laφxx = − sin(φ + θ) + γ, (3.2.6)

and the continuum approximation for the Lagrangian is

L =
" ∞

−∞

[
1
2

(φt)
2 − 1

2

(
L̃aφx

)2 − 1+ cos(φ + θ) + γφ

]
dx dt,

whereθ is defined similar to Eq. (3.2.2), i.e.,

θ =


0, x < 0,

−π, x > 0.

There are several ways to derive approximations (fora→ 0) for a continuum model
(similar ideas can be found in R [11]). The first obvious approximation is

φtt − φxx−
a2

12
φxxxx= − sin(φ + θ) + γ. (3.2.7)

Another approximation can be found by using thatLa is invertible (in the right type of
function space), henceφxx = L−1

a (φtt + sin(φ+ θ)− γ) andL−1
a = 1− a2

12∂xx+ . . ., so we
get

φxx = φtt + sin(φ + θ) − γ − a2

12
∂xx(φtt + sin(φ + θ)), x , 0. (3.2.8)

Expanding this equation and using the expression forφxx again, we get

φxx = φtt + sin(φ + θ) − γ
− a2

12(φtttt + [sin(φ + θ)] tt − φ2
x sin(φ + θ)

+ cos(φ + θ)[φtt + sin(φ + θ) − γ]), x , 0.

(3.2.9)
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The steady state equation for Eq. (3.2.7) is

φxx+
a2

12
φxxxx= sin(φ + θ) − γ, x , 0,

while Eq. (3.2.8) yields the equation

φxx = (1− a2

12
∂xx) sin(φ + θ) − γ, x , 0,

and Eq. (3.2.9) gives

φxx = sin(φ + θ) − γ − a2

12

{
−φ2

x sin(φ + θ) + cos(φ + θ)[sin(φ + θ) − γ]
}
, x , 0.

Unfortunately the last two equations are not Hamiltonian, so we have lost the Hamil-
tonian properties, while the first equation is singularly perturbed.

Yet another approximation that has variational structure and is not singularly perturbed
can be obtained by combining the two equations that have losttheir variational char-
acter. Indeed, taking (3.2.8) twice and substracting (3.2.9) gives

φxx = φtt + sin(φ + θ) − γ
− a2

12

(
2φxxtt + 2φxx cos(φ + θ) − φ2

x sin(φ + θ) − φtttt − φtt cos(φ + θ)

+φ2
t sin(φ + θ) − cos(φ + θ)(φtt + sin(φ + θ) − γ)

)
, x , 0.

(3.2.10)
The Lagrangian for this system is

L =
!

1
2φ

2
t − 1

2φ
2
x − 1+ cos(φ + θ) + γφ

+ a2

2

[
φx∂x(φtt + sin(φ + θ)) + 1

2(φtt + sin(φ + θ) − γ)2
]

dx dt.

The static equation for (3.2.10) is

φxx = sin(φ + θ) − γ
− a2

12

(
2φxx cos(φ + θ) − φ2

x sin(φ + θ) − cos(φ + θ)(sin(φ + θ) − γ)
)
, x , 0.

This equation is a regularly perturbed Hamiltonian system with the Hamiltonian

H = φ2
x

(
1
2
+

a2

12
cos(φ + θ)

)
+ γφ + cos(φ + θ) − a2

24
(sin(φ + θ) − γ)2 .

The analysis of the kink solutions will be very similar to theone in the section with
a = 0. All phase portrait constructions in the next section willcarry through for small
values ofa.

After considering several possible approximations, we will refer Eq. (3.2.10) asthe
continuum approximation to the discrete 0-π sine-Gordon equation (3.2.3), with the
boundary conditions at the discontinuity pointx = 0 are given by [12, 13, 9]

lim
x↑0

φ = lim
x↓0

φ, lim
x↑0

φx = lim
x↓0

φx. (3.2.11)
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3 Stability analysis of solitary waves in a 0-π Josephson junction

3.3 π-kink and its spectra in the continuum limit

Throughout all the section here we takea = 0 in Eq. (3.2.10), corresponding to
the differential equation for a perfect continuous long 0-π Josephson junction

φtt − φxx+ sin(φ + θ) = γ. (3.3.1)

For a Josephson junction without an applied bias current anda phase jump, i.e.γ =
0 andθ(x) ≡ 0, the basic (normalized) stationary, stable, monotonically increasing
fluxon is given by

φfl(x) = 4 arctanex, φfl(0) = π (3.3.2)

(see [14]).

In general whenθ(x) . 0, the equation (3.3.1) will introduce a discontinuity atx = 0
for the second derivativeφxx, hence a natural space for the solutions are the functions
which areC1 in x. The behaviour at infinity is regulated by requiring that thesolution
belongs toH2(R).

Theπ-kinks are static waves, connecting equilibrium states atx = ±∞ with a phase-
difference ofπ. Therefore, we can drop the time dependency and consider only the
following static wave equation

φxx− sin(φ + θ) = −γ. (3.3.3)

For |γ| < 1, the fixed points of this model equation areφ+s = arcsin(γ) andφ+c =
π−arcsin(γ) whenθ = 0 andφ−s = π+arcsin(γ) andφ−c = 2π−arcsin(γ) whenθ = −π.
In the x-dynamics of (3.3.3), the pointsφ±s are saddle points and the points withφ±c
are centre points.

By taking suitable combinations of the phase portraits forθ = 0 andθ = −π, theπ-
fluxons are constructed in [8]. The phase portraits for fixedθ = 0 or θ = −π for γ = 0
are essentially different from the ones for 0< γ < 1 (the case−1 < γ < 0 follows
from this one by takingφ 7→ −φ andγ 7→ −γ). In caseγ > 0, we have homoclinic
connections atkπ + arcsin(γ), k ∈ Z, k even (θ = 0) or k odd (θ = −π). If γ = 0, then
these homoclinic connections break to heteroclinic connections betweenkπ+arcsin(γ)
and (k+ 2)π + arcsin(γ).

Following the notation in [8],1 in caseγ = 0, there are two types of heteroclinic
connections (fluxons) in the corner junction. The first one, called type 1and denoted
byφ1

π(x; 0), connects 0 andπ. The point in the phase plane where the discontinuity lies
is denoted byd1(0). The second one, calledtype 2and denoted byφ2

π(x; 0), connects 0
and 3π. Now the point in the phase plane where the discontinuity lies is denoted by
d2(0). This solution is not a semifluxon, but it will be important in the analysis of
semifluxons with a hump forγ , 0 as will be discussed below.

If 0 < γ � 1, then there are three types ofπ-fluxons (heteroclinic connections) in the
corner junction, all connecting 0 andπ [8].2 The first semifluxon, calledtype 1and

1 See Fig. 2.2 in Chapter 2 of this thesis.
2 See Fig. 2.3.
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3.3 π-kink and its spectra in the continuum limit

denoted byφ1
π(x; γ), is a continuation of the connection atγ = 0. The point in the

phase plane where the discontinuity lies is denoted byd1(γ). This is a monotonically
increasingπ-fluxon.

The second one is calledtype 2and is denoted byφ2
π(x; γ). In the limit for γ → 0, it

breaks in the type 2 heteroclinic wave and the heteroclinic connection between 3π and
π. The point in the phase plane where the discontinuity lies isdenoted byd2(γ). This
π-fluxon is not monotonically increasing, but has a hump.

The third one is calledtype 3and is denoted byφ3
π(x; γ). In the limit for γ → 0, it

breaks in the heteroclinic connection between 0 and 2π and an anti-fluxon like the
type 1 wave which connects 2π andπ. The point in the phase plane where the dis-
continuity lies is denoted byd3(γ). Thisπ-fluxon is also not monotonically increasing
and it has a hump, but lower than the hump of the type 2 wave.

If γ increases, the pointsd2(γ) andd3(γ) approach each other, until they coincide at

γ = γ∗ =
2√

4+ π2
(3.3.4)

at the point (π + arcsin(γ∗), 0).3 At this point, the type 2 waveφ2
π(x; γ∗) ceases to

exist (in the limit it breaks into half the homoclinic connection for x < 0 and the
full homoclinic connection forx > 0). The type 3 waveφ2

π(x; γ∗) consists of half the
homoclinic connection forx < 0 and the fixed point forx > 0.

If γ increases further, the pointsd1(γ) andd3(γ) approach each other until they coin-
cide4 at

γ = γcr =
2
π
. (3.3.5)

Forγ > γcr, no static waveπ-fluxons can exist.

Using the homoclinic (heteroclinic) connections in the systems withθ = 0, π, we can
describe the fluxon in more detail. Letφh(x; γ) denote the even homoclinic connection
to arcsin(γ) for θ = 0 andγ > 0. Forγ = 0, letφh(x; 0) denote the even heteroclinic
connection between 0 and 2π. Finally, letφs(x; γ) denote the solution of the system
with θ = 0 andγ ≥ 0, which decays to arcsin(γ) for x → +∞ (i.e., the stable part of
the “tail of the fish” whenγ > 0). Note thatφs(x; 0) = φh(x; 0)− 2π.

Then we have for 0< γ < γ∗

φ1
π(x; γ) =


φh(x+ x+1 (γ); γ), for x < 0

φs(x+ x−1 (γ); γ) + π, for x > 0

φi
π(x; γ) =


φh(x+ x+i (γ); γ), for x < 0

φh(x+ x−i (γ); γ) + π, for x > 0

with i = 2, 3. The coordinate shiftsx±i , i = 1, 2, 3 are such that

di = (φh(x+i ),Dxφh(x+i )) = (φs,h(x−i ) + π,Dxφs,h(x−i )).

3 See Fig. 2.5.
4 See Fig. 2.6.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Hencex±2 (γ) = −x±3 (γ). Note that bothx+2 and x+3 converge to 0 forγ → γ∗ and
x−2 → −∞ for γ→ γ∗ andx−3 → +∞ for γ→ γ∗.

Forγ > γ∗, we have

φ1
π(x; γ) =


φh(x+ x+1 (γ); γ), for x < 0

φs(x+ x−1 (γ); γ) + π, for x > 0

φ3
π(x; γ) =


φh(x+ x+3 (γ); γ), for x < 0

φs(x+ x−3 (γ); γ) + π, for x > 0

Hence the homoclinic orbitφh is replaced with the solutionφs in the type 3 solution.

At γ = 0, we have an explicit expression for theπ-fluxons (see (3.3.2) for the expres-
sion ofφfl):

φ1
π(x; 0) =


φfl(x− ln(1+

√
2)), for x < 0

π − φfl(−x− ln(1+
√

2)), for x > 0

φ2
π(x; 0) =


φfl(x+ ln(1+

√
2)), for x < 0

3π − φfl(−x+ ln(1+
√

2)), for x > 0

(3.3.6)

Hence both functions are even and cos(φi
π(x; 0) + θ) is continuous and even, since

φi
π(0; 0)= π

2 (mod 2π).

For small value ofγ, we can approximate the homoclinic orbitφh(x; γ) up to orderγ
by using the 2π-fluxonφfl and its linearization.

Lemma 3.1. For γ small, we have for the even homoclinic connectionφh(x; γ)

φh(x; γ) = φfl(x+ Lπ(γ)) + γ φ1(x+ Lπ(γ)) + γ2R2(x+ Lπ(γ); γ), x < 0, (3.3.7)

where Lπ(γ) is such thatd
dx
φh(Lπ(γ); γ) = 0. Then,

Lπ(γ) =
1
2
| ln γ| + ln

4√
π
+ O(

√
γ) (3.3.8)

φ1(x) =
1
2

[
−1+ coshx+

∫ x

0

ξ

coshξ
dξ

]
1

coshx

− arctanex
( x
coshx

+ sinhx
)
. (3.3.9)

In hereγ2R2(x + Lπ(γ); γ) = O(γ), uniform for x < 0 and γφ1(Lπ(γ)) = O(
√
γ).

Explicitly:

φh(Lπ) = 2π − 2
√
π
√
γ + O(γ). (3.3.10)

Furthermore,φ1(x̃; γ) = O(1) and R2(x̃; γ) = O(1), uniform for x̃ < 0.
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3.3 π-kink and its spectra in the continuum limit

Proof. We introduce the expansion

φh(x; γ) = φfl [x+ Lπ(γ)] + γφ1[x+ Lπ(γ)] + γ2R2[x+ Lπ(γ); γ].

Since it is more convenient in the following perturbation analysis to follow the nor-
malization ofφfl(x) (see (3.3.2)), we setφh(0;γ) = π and thus shift the pointx = 0
of φh(x; γ) to a yet undetermined positionLπ(γ). In the new coordinates, the position
Lπ(γ) > 0 is determined by the conditionddxφh(Lπ; γ) = 0. By linearizing, it follows
that the equation forφ1 is,

L(x) φ1 = −1, where L(x) =
d2

dx2
− cos(φfl(x)). (3.3.11)

The operatorL(x) is identical to the operator associated to the stability ofφfl(x). The
homogeneous problemLψ = 0 has the following two independent solutions,

ψb(x) =
1

coshx
, ψu(x) =

x
coshx

+ sinhx, (3.3.12)

whereψb(x) = 1
2

d
dxφfl(x) is bounded andψu(x) unbounded asx → ±∞. By the

variation-of-constants method, we find the general solution to (3.3.11),

φ1(x; A, B) =

[
A+

1
2

coshx+
1
2

∫ x

0

ξ

coshξ
dξ

]
1

coshx

+[B− arctanex]
( x
coshx

+ sinhx
)
,

with A, B ∈ R. The solutionφ1(x) of (3.3.11) must be bounded asx → −∞ and is
normalized byφ1(0) = 0 (sinceφh(0) = φfl(0) = π). Thus, we find thatA = − 1

2 and
B = 0. Note that limx→−∞ φ1(x) = 1, which agrees with the fact that limx→−∞ φh(x) =
arcsinγ = γ + O(γ3). The solutionφ1(x) is clearly not bounded asx → ∞, the
unbounded parts ofφ1(x) and d

dxφ1(x) are given by

φ1|u(x) = − arctanex sinhx,
d
dx
φ1|u(x) = − arctanex coshx. (3.3.13)

It follows thatφ1(x) = O( 1
γσ

) for someσ > 0 if ex = O( 1
γσ

), i.e., if x = σ| logγ| at
leading order. Using this, it is a straightforward procedure to show that the rest term
γ2R2(x; γ) in (3.3.7) is of the orderγ2−2σ for x = σ| logγ| +O(1) (andσ > 0). Hence,
the approximation ofφh(x) by expansion (3.3.7) breaks down asx is of the order
| logγ|. On the other hand, it also follows thatφ1

appr(x) = φfl(x) + γφ1(x) is a uniform
O(γ)-accurate approximation ofφh(x) on an interval (−∞, L] for L = 1

2 | logγ| + O(1).
Sinceφfl(L) + γφ1(L) = O(

√
γ) for suchL, we can computeLπ = 1

2 | logγ| + O(1), the
value ofx at which

0 =
d
dx
φh(x) =

d
dx
φ1

appr(x) + O(γ) =
d
dx
φfl(x) + γ

d
dx
φ1|u(x) + O(γ).

We introduceY by ex = Y√
γ
, so that it follows by (3.3.2) and (3.3.13) thatY = 4√

π
+

O(
√
γ), i.e.

Lπ(γ) =
1
2
| logγ| + log

4√
π
+ O(

√
γ).
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3 Stability analysis of solitary waves in a 0-π Josephson junction

A straightforward calculation shows that

φh(Lπ) = 2π − 2
√
π
√
γ + O(γ).

�

3.3.1 Stability of the type 1 solution

We will show analytically that the type 1 waveφ1
π(x; γ) is linearly stable for 0≤

γ ≤ γcr. To linearize about a solutionφi
π(x; γ), write φ(x, t) = φi

π(x; γ) + v(x, t),
substitute it in the model equation (3.3.1) and disregard all higher order terms:

[Dxx− cos(φi
π(x; γ) + θ(x))] v = Dtt v. (3.3.14)

Using the spectral Ansatzv(x, t) = eλt̃v(x), wherev(x) is a continuously differentiable
function and dropping the tildes, we get the eigenvalue problem

Li(x; γ) v = λ2 v, (3.3.15)

whereLi is defined as

Li(x; γ) = Dxx − cos(φi
π(x; γ) + θ(x)). (3.3.16)

The natural domain forLi is C1(R) ∩ H2(R). We callΛ an eigenvalue ofLi if there
is a functionv ∈ C1(R) ∩ H2(R), which satisfiesLi(x; γ) v = Λv. SinceLi depends
smoothly onγ, the eigenvalues ofLi will depend smoothly onγ too.

The operatorLi is symmetric, hence all eigenvalues will be real. A straightforward
calculation gives that the continuous spectrum ofLi is in (−∞,−

√
1− γ2)

Since the eigenfunctions are continuously differentiable functions inH2(R), Sturm’s
Theorem [15] can be applied, leading to the fact that the eigenvalues are bounded
from above. Furthermore, ifv1 is an eigenfunction ofLi with eigenvalueΛ1 andv2

is an eigenfunction ofLi with eigenvalueΛ2 with Λ1 > Λ2, then there is at least one
zero ofv2 between any pair of zeros ofv1 (including the zeros at±∞). Hence if the
eigenfunctionv1 has fixed sign, thanΛ1 is the largest eigenvalue ofLi .

The following lemma gives a necessary and sufficient condition forLi to have an
eigenvalueΛ = 0.

Lemma 3.2. The eigenvalue problem

Li(x; γ)v = Λv, x ∈ R,

has an eigenvalueΛ = 0 if and only if one of the following two conditions holds

1. φi
π(0;γ) = kπ, for some k∈ Z;

2. Dxφ
i
π(0;γ) = 0 and there are some x± such that Dxφ

i
π(x±; γ) , 0.
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3.3 π-kink and its spectra in the continuum limit

Proof. Sinceφi
π(x) converges to a saddle point|x| → ∞, this implies thatDxφπ(x)

decays exponentially fast to 0 for|x| → ∞. Sinceφi
π(x) solves (3.3.3), differentiating

this ODE with respect tox, gives

Li(x) Dxφ
i
π(x) = 0, for x , 0.

This implies that for any constantK, the functionwi
K(x) = K Dxφ

i
π(x) satisfiesLi(x) wi

K(x) =
0 for x , 0. Hence for anyK− andK+, the solution

wi(x) =


wi

K−
(x), x < 0;

wi
K+

(x), x > 0.

solvesLi(x) wi(x) = 0 for x , 0. The functionwi(x) is continuously differentiable if
and only if the following two conditions hold

1. wi
K−

(0−) = wi
K+

(0+), in other words,K− Dxφ
i
π(0) = K+ Dxφ

i
π(0), sinceφi

π is
continuously differentiable;

2. Dxwi
K−

(0−) = Dxwi
K+

(0+), in other words,K− Dxxφ
i
π(0−) = K+ Dxxφ

i
π(0+).

The first condition is satisfied ifK− = K+ or Dxφ
i
π(0) = 0. If Dxφ

i
π(0) = 0, we can

chooseK± such that the second condition is satisfied and we do not end upwith the
trivial solution.

If Dxφ
i
π(0) , 0, we needDxxφ

i
π to be continuous atx = 0 in order to satisfy the second

condition. SinceDxxφ
i
π(x) = sin(φi

π(x)+ θ(x))− γ, Dxxφ
i
π is continuous atx = 0 if and

only if sin(φi
π(0)) = 0. These arguments prove that if one of the two conditions are

satisfied, thenΛ = 0 is an eigenvalue ofLi .

Next we assume thatΛ = 0 is an eigenvalue ofLi , hence there is some continuously
differentiable functionvi(x) such thatLi(x)vi(x) = 0 for x , 0 andvi(x) → 0 for
|x| → ∞. The only solutions decaying to zero at+∞ are the solutions on the one
dimensional stable manifold and similarly, the only solutions decaying to zero at−∞
are the solutions on the one dimensional unstable manifold.The stable and unstable
manifold are formed by multiples ofDxφ

i
π. So we can conclude that there existK±

such that

vi(x) =


K−Dxφ

i
π(x) for x < 0;

K+Dxφ
i
π(x) for x > 0.

Now we are back in the same situation as above, so we can conclude that either one
of the two conditions in the lemma must be satisfied. �

The second condition in the lemma does not occur. Indeed, thefirst part of the second
condition, i.e.,Dxφ

i
π(0;γ) = 0 happens only ifdi has its second coordinate zero, hence

only atγ = γ∗ for d2 = d3. The solutionφ2
π(x; γ∗) has ceased to exist and the solution

φ3
π(x; γ∗) consists of the fixed point forx > 0. Hence this solution does not satisfy the

second part of the second condition.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

The first condition of the lemma is satisfied atγ = γcr for i = 1, 3 (for this value ofγ,
the solutionsφ1

π andφ3
π are equal). Atγ = γcr, the homoclinic orbitφ+h and the orbit

φ−s are tangential in the phase portrait, thus guaranteeing that the second derivative
Dxxφ

i
φ is continuous atx = 0. To see that this is the only value ofγ for which the first

condition is satisfied, we derive the relation betweenφi
π(0;γ) andγ. Multiplying the

static equation (3.3.3) withDxφ
i
π and rewriting it gives

Dx[(φi
π(x; γ))2] = 2Dx[−γφi

π(x; γ) − θ(x) cos(φi
π(x; γ))].

Integration±∞ to 0 and using thatDxφ
i
π(±∞; γ) = 0, shows

(φi
π(0;γ))2 = 2[−γ(φi

π(0;γ) − φi
π(−∞; γ) − cos(φi

π(0;γ)) + cos(φi
π(−∞; γ))]

(φi
π(0;γ))2 = 2[−γ(φi

π(0;γ) − φi
π(+∞; γ) + cos(φi

π(0;γ)) − cos(φi
π(+∞; γ))]

Subtracting these two equations and using thatφi
π(+∞; γ) = φi

π(−∞; γ) + π, we get
that

0 = −πγ − 2 cos(φi
π(0;γ)), hence cos(φi

π(0;γ)) =
πγ

2
. (3.3.17)

If the first condition is satisfied, then cos(φi
π(0;γ)) = 1, henceγ = 2

π
= γcr.

Next we will show that the spectrum of the operatorL1 is stable for 0≤ γ < γcr.

Lemma 3.3. For all 0 ≤ γ < γcr, all eigenvalues ofL1(x; γ) are strictly negative. For
γ = γcr, the operatorL1(x; γcr) has 0 as its largest eigenvalue. Forγ = 0, the largest
eigenvalue is− 1

4(
√

5+ 1).

Proof. From Lemma 3.2, it follows thatL1 has an eigenvalueΛ = 0 atγ = γcr. The
eigenfunction isDxφ

1
π(x; γcr) and this function is always positive, sinceφ1

π(x; γcr) is
monotonically increasing. From Sturm’s Theorem, it follows thatΛ = 0 is the largest
eigenvalue ofL1 atγ = γcr.

We can explicitly determine all eigenvalues ofL1(x; 0). From the explicit expression
for φ1

π it follows thatL1(x; 0) is a continuous even operator. For fixedΛ, the operator
L1(x; 0)− Λ has two linearly independent solutions. Since the fixed point is a saddle
point, there is one solution that is exponentially decayingat +∞ and there is one
solution that is exponentially decaying at−∞. If we denote the exponentially decaying
function at−∞ by v−(x;Λ), then the exponentially decaying function at+∞ up to
a constant is given byv+(x;Λ) = v−(−x;Λ) (sinceL1 is symmetric). Obviously,
v+(0;Λ) = v−(0;Λ), henceΛ is an eigenvalue ifDxv+(0;Λ) = Dxv−(0;Λ), i.e., when
Dxv−(0;Λ) = 0 or whenv−(0;Λ) = 0.

Using M [16], we can derive explicit expression for the solutionsv−(0;Λ) (see
also [14]). Usingx1 = ln(

√
2+ 1), we get

v−(x; 0) = sech(x− x1), v−(x;Λ) = eµ(x−x1) [tanh(x− x1) − µ], µ =
√
Λ + 1.

A straightforward calculation shows thatv−(0;Λ) , 0. The conditionDxv−(0;Λ) = 0
gives that

µ2 − 1
2

√
2µ − 1

2
= 0, hence

√
Λ + 1 =

1
4

√
2(
√

5− 1):Λ = −1
4

(
√

5+ 1).
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Figure 3.2: (a) The eigenvalue of the stable semifluxon as a function of the bias currentγ. The
dashed line is the boundary of the continuous spectrum. (b) Asketch of the evolution of a
π-kink in the continuum limit in the presence of a bias currentabove the critical value. The
release of fluxons can be seen as well. The plot is presented interms of the magnetic fieldφx.

Now assume that the operatorL1(x; γ) has a positive eigenvalueΛ1(γ) for some 0≤
γ < γcr. SinceΛ depends continuously onγ, there has to be some 0< γ̂ < γcr such
thatΛ1(̂γ) = 0. However, from Lemma 3.2 it follows that this is not possible. �

The eigenvalues of the linearization are solution of the equationλ2−Λ1(γ) = 0, hence
λ = ±

√
Λ1(γ). SinceΛ1(γ) ≤ 0, this implies that<(λ) ≤ 0, hence the waves of type 1

are stable.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

We also have used numerics using standard procedures in MATLAB to compute the
eigenvalues of this stable semifluxon as a function of the applied bias current. Fur-
ther explanations of the computation procedure will be presented later in Sec. 3.6.
In Fig. 3.2(a), we show the first two largest eigenvalues of the semifluxon obtained
numerically.

One can see that the largest eigenvalue tends to zero when thebias currentγ ap-
proaches the critical oneγcr as is calculated analytically. The critical currentγcr has
been calculated before in [12, 13, 9, 8]. It was first proposedin [12, 13] that a constant
driving force can excite the largest eigenvalue of a semifluxon towards zero. Later, it
is shown in [8] that the critical current indeed correspondsto the disappearance of a
static semifluxon.

When we apply a bias current above the critical value, the semifluxon reverses its
polarity and releases a fluxon. As long asγ is larger thanγcr the process repeats
itself. The semifluxon changes its direction back and forth while releasing a fluxon
or antifluxon alternately. A sketch of the release of fluxons from a semifluxon is
presented in Fig. 3.2(b). In experiments, the polarity of a semifluxon can also be
reversed by applying a magnetic field [7].

Whenγ = γcr, there is at least one eigenvalue bifurcating from the edge of the con-
tinuous spectrum. This conjecture is obtained by considering also the stability of a
type 3 semifluxon which is discussed later in Subsection 3.3.3. A similar picture as
Fig. 3.2 for a type 3 semifluxon is presented in Fig. 3.4. From that figure, one can
deduce that a type 3 semifluxon forγ = γcr has at least two eigenvalues, one of which
is attached to the continuous spectrum. Because a type 1 semifluxon is the same as a
type 3 semifluxon whenγ = γcr, we can conclude that at that value of bias current, a
stable semifluxon has an additional eigenvalue.

Next we will prove that the type 2 and type 3 waves are linearlyunstable for all values
of γ for which they exist.

3.3.2 Instability of type 2 solutions

Lemma 3.4. For all 0 < γ < γ∗, the largest eigenvalue ofL2(x; γ) is strictly positive.
In the limitγ→ 0, the largest eigenvalue ofL2(x; γ) converges to14(

√
5− 1).

Proof. Using the approximation for the homoclinic orbitφh(x; γ) in Lemma 3.1, we
see that, forγ small, an approximation for theπ-fluxon of type 2 is given by (recall
thatx1 = ln(1+

√
2))

φ2
π(x; γ) =



φfl(x+ x1) + O(γ), x < 0

π + φfl(x− x1) + γφ1(x− x1) + γ2R2(x− x1; γ),

0 < x < Lπ(γ) + x1

π + φfl(−x̂) + γφ1(−x̂) + γ2R2(−x̂; γ), x > Lπ(γ) + x1
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Figure 3.3: (a) The eigenvalues of type 2 semifluxon as a function of the external forceγ. The
result that the largest eigenvalue is always positive showsthe instability of type 2 semifluxon.
Whenγ → 0, Λ → 1

4(
√

5 − 1) which is the largest eigenvalue of a3π-kink. There are two
eigenvalues bifurcating from the edge of the continuous spectrum (dashed line). (b) A sketch
of the evolution of a3π-kink (3.3.6) in the continuum limit. The separation of a fluxon from the
semifluxon can be seen as well. The plot is presented in terms of the magnetic fieldφx.

with x̂ = x−2Lπ(γ)−x1, sincex+2 (γ) = x1−Lπ(γ)+O(γ) andx−2 (γ) = −x1−Lπ(γ)+O(γ).

There is no limit forγ→ 0, since the fluxon breaks in two parts, one of them being the
3π-fluxon denoted byφ2

π(x; 0). In a similar way as we found the largest eigenvalue for
the linearization operatorL1(x; 0) about theπ-fluxonφ1

π(x; 0), we can find the largest
eigenvalue for the linearization operatorL2(x; 0) about the 3π-fluxon φ2

π(x; 0). The
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3 Stability analysis of solitary waves in a 0-π Josephson junction

largest eigenvalue isΛ2(0) = 1
4(
√

5− 1) and the eigenfunction is

ψ2(x; 0) =


eµ(x+x1)(µ − tanh(x+ x1)), x < 0

eµ(−x+x1)(µ − tanh(−x+ x1)), x > 0
,

whereµ =
√
Λ + 1 = 1

4

√
2(1+

√
5).

Forγ small, we approximate the eigenfunction on the whole interval x ∈ R by

ψ2(x; γ) =



eµ(x+x1)(µ − tanh(x+ x1)) + O(
√
γ), x < 0,

k2 eµ(−x+x1)(µ − tanh(−x+ x1))+

k3 eµ(x−x1)(µ − tanh(x− x1)) + O(
√
γ), 0 < x < Lπ(γ) + x1

k4 eµ(−x̂)(µ + tanh(̂x)) + O(
√
γ), x > Lπ(γ) + x1.

In this approximation, we include the secular term which is growing at infinity with
the multiplication factork3. Whenγ = 0 andk3 = 0, the first two lines in the defini-
tion of ψ2 describe an eigenfunction of the linearized problem about the heteroclinic
connection between 0 and 3π. The corresponding eigenvalue is1

4(
√

5− 1).

When we construct an eigenfunction of the formψ2(x, γ) given above forγ > 0, we
need to determine the constantsk2, k3 andk4 such that the function is continuously
differentiability atx = 0 andx = Lπ(γ) + x1. From the continuity conditions atx = 0,
we obtain:

k2 =

√
2

4µ(µ − 1)(µ + 1)
, (3.3.18)

k3 =
(3+ 2

√
2)µ(2µ2 − µ

√
2− 1)(2µ −

√
2)

4µ(µ2 − 1)
. (3.3.19)

From one of the continuity conditions atx = Lπ(γ)+ x1, we determinek4 as a function
of k2 andk3. Now we are left with one more matching condition. Values ofµ for
which this condition is satisfied correspond to the eigenvalues of the operatorL2(x; γ)
for γ small. More explicitly, the spectral parameterµ has to satisfy the equation

F (µ) = 16µk3(µ − 1)2(γπ)−µ((3µ + 4)πγ + 16µ) + O(γ−µ+2) = 0. (3.3.20)

Whenγ = 0, it is as expected that there are four positive roots givingfour squared
eigenvalues, namelyΛ(0) = 1

4(
√

5− 1),− 1
2, and the double eigenvalueΛ(0) = 0. The

first two come from the zeros ofk3 and the last ones are the eigenvalues of the fluxon.
One can also notice that there is no term with a multiplication factork2 to this leading
order. This term appears at most of orderO(γµ+2).

The proof that the largest eigenvalue is near1
4(
√

5− 1) for γ small will be complete if

we can show thatFµ
(√

2/4(1+
√

5)
)
, 0, i.e. the non-degeneracy condition that says

that the eigenvalue can be continued continuously forγ small.
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3.3 π-kink and its spectra in the continuum limit

Simple algebraic calculations give that

Fµ

√

2
4

(1+
√

5)

 = c1γ
−
√

2
4 (1+

√
5) + O(γ1−

√
2

4 (1+
√

5)) (3.3.21)

with c1 a positive constant. Hence,Fµ(
√

2
4 (1+

√
5)) > 0.

This finally shows that the largest eigenvalue is near1
4(
√

5 − 1) for γ small but pos-
itive. Since the largest eigenvalue depends continuously on γ, it can only disappear
at a bifurcation point. There are no bifurcation points and it is not possible that the
eigenvalue becomes 0 (see Lemma 3.2), hence the largest eigenvalue will be positive
as long as fluxonφ2

π(x; γ) exists, i.e., for 0< γ < γ∗. �

Remark 3.1. We cannot use a comparison theorem, becauseφ2
π < φ3

π for x < 0 and
φ2
π > φ

3
π for x > 0.

The eigenvalues for the linearizations are solution of the equationλ2 − Λ2(γ) = 0,
henceλ = ±

√
Λ2(γ). SinceΛ2(γ) > 0, this implies that one of the two eigenvalues

has<(λ) > 0, hence the fluxons of type 2 are unstable. The numerically obtained
eigenvalues of semifluxons of this type as a function ofγ are shown in Fig. 3.3(a). In
Fig. 3.3(b), we present the evolution of a 3π-kink (3.3.6) which is the limit of a type
2 semifluxon whenγ → 0. The separation of a fluxon from the semifluxon is clearly
seen and indicates the instability of the state.

Remark 3.2. A type 2 semifluxon can be seen as a concatenation of a 3π- and a−2π-
kink which is clear in the limitγ → 0. Therefore, in that limit the other eigenvalues
of L2(x; γ) converge to 0,−0.5, and−1. The eigenvalues 0 and−1 are contributions
of the antikink. The eigenvalueΛ2(0) = −0.5 corresponds to the first excited state of
a 3π-kink with eigenfunction

ψ2(x; 0) =


eµ(x+x1)(µ − tanh(x+ x1)), x < 0

eµ(−x+x1)(tanh(−x+ x1) − µ), x > 0
,

whereµ =
√
Λ + 1 = 1√

2
.

3.3.3 Instability of type 3 solutions

Lemma 3.5. For all 0 < γ < γcr, the largest eigenvalue ofL3(x; γ) is strictly positive.
For γ = γcr, the operatorL3(x; γcr) has 0 as its largest eigenvalue.

Proof. The solutionφ3
π(x, γcr) = φ1

π(x, γcr), hence from Lemma 3.3 it follows that the
largest eigenvalue isΛ3 = 0.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Forγ near zero, we will use the approximation in Lemma 3.1 for the homoclinic orbit
φh(x; γ) to get an approximation for the type 3 fluxon

φ3
π(x; γ) =



φfl(x̂) + γφ1(x̂) + γ2R2(x̂; γ), x < −Lπ(γ) + x1

φfl(−x+ x1) + γφ1(−x+ x1) + γ2R2(−x+ x1; γ),

−Lπ(γ) + x1 < x < 0

π + φfl(−x− x1) + O(γ), x > 0

wherex̂ = x− x1 + 2Lπ(γ).

For the largest eigenvalue, we set

Λ3(γ) = γΛ1(γ).

To construct the first part of the approximation of the eigenfunction, we considerx <
−Lπ(γ) + x1, i.e., x̂ < Lπ(γ). In this part of the arguments, we will drop the hat inx̂.
On (−∞, Lπ), we expandψ1

approx = ψ0 + γψ1, this yields the following equations for
ψ0,1(x),

Lψ0 = 0, Lψ1 = [Λ1(0)− φ1(x) sinφfl(x)]ψ0. (3.3.22)

We selectψ0(x) uniquely by assuming thatψ(x)→ 0 asx→ −∞ and thatψ(0) = 1,

ψ0(x) =
1

coshx
(3.3.23)

(see 3.3.12). To solve theψ1-equation, we note thatddxφ1(x) is a solution of (see
(3.3.11) and (3.3.2))

Lψ = −φ1 sinφfl
d
dx
φfl = −2φ1 sinφflψ0,

so that we find as general solution,

ψ1(x) = [A− 1
2
Λ1(log(coshx) +

∫ x

0

ξ

cosh2 ξ
dξ)]

1
coshx

+

[B+
1
2
Λ1 tanhx](

x
coshx

+ sinhx) +
1
2

d
dx
φ1.

By imposing limx→−∞ ψ1(x) = 0 andψ1(0) = 0 we find thatA = π
4 , B = 1

2Λ1(0). As
in the case ofφ1(x), we are especially interested in the unbounded parts ofψ1(x) and
d
dxψ1(x),

ψ1|u(x) = 1
2Λ1(1+ tanhx) sinhx− 1

2 arctanex coshx,

d
dxψ1|u(x) = 1

2Λ1(1+ tanhx) coshx− 1
2 arctanex sinhx.

(3.3.24)

We note that the error term|ψ(x)−ψ1
appr(x)| = γ2|S2(x; γ)| is at mostO(γ) on (−∞, Lπ)

(the analysis is similar to that forγ2|R2(x; γ)|).
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3.3 π-kink and its spectra in the continuum limit

Next consider the second part of the approximation, i.e.,x between−Lπ(γ) + x1 and
0. Here we define the translated coordinatex− x1, which is on the interval (−Lπ,−x1).
Since we have to matchψ1

appr(x) to the approximationψ2
appr(x) of ψ(x), alongφ2

appr(x)
and is thus defined on the interval (−Lπ,−x1), we need to computeψ1

appr(Lπ) and
d
dxψ

1
appr(Lπ) which to the leading order are calculated from (3.3.24), i.e.

ψ1
appr(Lπ) =

2Λ1(0)√
π

√
γ + O(γ),

d
dx
ψ1

appr(Lπ) =
2Λ1(0)− π√

π

√
γ + O(γ). (3.3.25)

Thus, bothψ1
appr(Lπ) and d

dxψ
1
appr(Lπ) areO(

√
γ). Now, we choose a special form

for the continuation ofψ(x), i.e. the part linearized alongφ2
appr(x). It is our aim to

determine the value ofΛ1, for which there exists a positive integrableC1 solutionψ of
L3(x; γ)ψ = γΛ1(0)ψ. By general Sturm-Liouville theory [15] we know that this value
of Λ1 must be the critical (i.e. largest) eigenvalue. Our strategy is to try to continue
ψ(x) beyond (−∞, Lπ) by a function that remains at mostO(

√
γ), i.e. we do not follow

the approach of the existence analysis and thus do not reflectand translateψ1
appr(x)

to constructψ2
appr(x) (since this solution becomes (in general)O(1) for x = O(1)).

Instead, we scaleψ(x) asγψ̃(x). The linearizationψ̃(x) alongφ2
appr(x) on the interval

(−Lπ, x1) must solveLψ̃ = O(γ), thus, at leading order

ψ̃(x) =
Ã

coshx
+ B̃(

x
coshx

+ sinhx). (3.3.26)

The approximationψ2
appr(x) = γψ̃(x) must be matched toψ1

appr(Lπ) and d
dxψ

1
appr(Lπ) at

x = −Lπ, i.e.

2Λ1(0)√
π
= − 2B̃√

π
+ O(

√
γ),

2Λ1(0)− π√
π

=
2B̃√
π
+ O(

√
γ).

Note thatÃ does not appear in these equations; as a consequence,ψ1
appr(x) andψ2

appr(x)
can only be matched for a special value ofΛ1, Λ1(0) = 1

4π, with B̃ = −Λ1(0) <
0. Thus, we have found for this special value ofΛ1 and for Ã > 0 a positiveC1-
continuation of the solutionψ(x) of the eigenvalue problem forL3(x; γ) – recall that
x < 0 in the domain of̃ψ(x). At the point of discontinuity (−x1 for ψ̃(x), or atx = 0 in
the original coordinates of (3.3.1)), we have

ψ2
appr(−x1) = γψ̃(−x1) = γ[ 1

2

√
2Ã− π

8

√
2(log(

√
2− 1)−

√
2)] + O(γ2),

d
dxψ

2
appr(−x1) = γ d

dxψ̃(−x1) = γ[ 1
2 Ã− π

8(log(
√

2− 1)+ 3
√

2)] + O(γ2).
(3.3.27)

Hence, we have constructed for a special choice ofΛ, Λ = Λ∗ = π
4γ + O(

√
γ) > 0, an

approximation of a family of positive solutions of the eigenvalue problem forL3(x; γ)
on x < 0 – in the coordinates of (3.3.1) – that attain the values given by (3.3.27) at
x = 0, and that decay to 0 asx → −∞. The question is now whether we can ‘glue’
an element of this family in aC1-fashion to a solution of the eigenvalue problem for
L3(x; γ) on x > 0 – withΛ = Λ∗ – that decays (exponentially) asx → ∞. If that is
possible, we have constructed a positive integrable solution to the eigenvalue problem
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3 Stability analysis of solitary waves in a 0-π Josephson junction

for L3(x; γ), which implies thatΛ∗ > 0 is the critical eigenvalue and thatφ3
π(x) is

unstable.

An approximation ofψ(x) on x > 0,ψ3
appr(x), is obtained by linearizing alongφ3

appr(x)
and by translatingx so thatx ∈ (x1,∞). Sinceψ3

appr(x) has to match to expressions of
O(γ) (3.3.27) atx1, we also scaleψ3

appr(x), ψ3
appr(x) = γψ̂(x). We find thatLψ̂ = O(γ)

so thatψ̂(x) again has to be (at leading order) a linear combination ofψb(x) andψu(x)
(3.3.12). However,̂ψmust be bounded asx→ ∞, which yields that̂ψ(x) = Â/ coshx+
O(γ) for someÂ ∈ R. At the point of discontinuity we thus have

ψ3
appr(x1) = γψ̂(x1) = 1

2

√
2Âγ + O(γ2),

d
dxψ

3
appr(x1) = γ d

dxψ̃(x1) = − 1
2 Âγ + O(γ2).

(3.3.28)

A positiveC1-solution of the eigenvalue problem forL3(x; γ) exists (forΛ = Λ∗) if
there existÃ, Â > 0 such that (see Eqs. (3.3.27) and (3.3.28))

1
2

√
2Ã − π

8

√
2(log(

√
2− 1)−

√
2) = 1

2

√
2Â

1
2 Ã − π

8(log(
√

2− 1)+ 3
√

2) = − 1
2 Â

(3.3.29)

Since the solution of this system is given byÃ = 1
4π[
√

2 + log(
√

2 − 1)] > 0 and

Â = 1
2π
√

2 > 0, we conclude that the eigenvalue problem for theπ-fluxonφ3
π(x; γ) has

a positive largest eigenvalue

Λ∗ =
π

4
γ + O(

√
γ). (3.3.30)

Hence the eigenvalue forγ small is positive. From Lemma 3.2 it follows that there
are no zero eigenvalues between 0 andγcr, hence the largest eigenvalue ofL3(γ) is
positive for all values ofγ. �

Remark 3.3. For anyλ = O(
√
γ), or equivalently anyΛ1 = O(1), there exists a

(normalized) solution to the eigenvalue problem forL3(x; γ) on x < 0 that decays
as x → −∞, and that is approximated byψ1

appr(x) andψ2
appr(x) (matched in aC1-

fashion at±Lπ). If Λ1 is notO(
√
γ) close to1

4π, however,ψ2
appr(x) cannot be scaled

asγψ̃(x) and the solution is notO(γ) at the point of discontinuity – in general it is
O(1). Moreover, for anyΛ1 = O(1), there also exists onx > 0 a 1-parameter family of
(non-normalized) eigenfunctions for the eigenvalue problem forL3(x; γ) that decay
asx → ∞. In this family there is one unique solution that connects continuously to
the (normalized) solution atx < 0. In fact, one could define the jump in the derivative
at x = 0,J(λ; γ), as an Evans function expression (note thatJ(λ; γ) can be computed
explicitly). By definition,λ is an eigenfunction ofL3(x; γ) if and only ifJ(λ; γ) = 0.
In the above analysis we have shown thatJ(λ∗; γ) = 0.

Remark 3.4. The classical, driven, sine-Gordon equation, i.e.θ ≡ 0 in (3.3.1), has
a standing pulse solution, that can be seen, especially for 0< γ = γ � 1, as a
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Figure 3.4: The eigenvalues of type 3 semifluxon as a function of the external forceγ. The result
that the largest eigenvalue is always positive shows the instability of type 3 semifluxon. When
γ � 1, according to Eq. (3.3.30) the largest eigenvalue is approximated byΛ = π

4γ shown in
dash-dotted line. The dashed line is the boundary of the continuous spectrum.

fluxon/anti-fluxon pair. This solution is approximated ford
dxφ > 0 (the fluxon) by

φ1
appr(x) and for d

dxφ < 0 (the anti-fluxon) byφ1
appr(−x). It is (of course) unstable,

the (approximation of the) critical unstable eigenvalue can be obtained from (3.3.25).
The corresponding eigenfunction is approximated byψ1

appr(x) on (−∞, Lπ), and we
conclude from (3.3.25) thatddxψ

1
appr(Lπ) = 0 for λ2 = γΛ1 = γ π2 + O(γ

√
γ) (while

ψ1
appr(Lπ) > 0). Hence, for this value ofΛ1, we can matchψ1

appr(x) to ψ2
appr(x) =

ψ1
appr(−x) in aC1-fashion, it gives a uniformO(γ)-approximation of the critical, posi-

tive (even, ‘two-hump’) eigenfunction of the fluxon/anti-fluxon pair at the eigenvalue
λ+ =

1
2

√
2π
√
γ + O(γ) > 0.

The eigenvalues for the linearizations are solution of the equationλ2 − Λ3(γ) = 0,
henceλ = ±

√
Λ3(γ). SinceΛ3(γ) > 0, this implies that one of the two eigenvalues

has<(λ) > 0, hence the fluxons of type 3 are unstable. In Fig. 3.4, we present
numerical calculations of the eigenvalues of type 3 semifluxon as a function of the
bias currentγ.

Remark 3.5. A type 3 semifluxon can be seen as a concatenation of a 2π- and a−π-
kink. This can be seen clearly in the limitγ → 0. Therefore, in that limit the other
eigenvalues ofL3(x; γ) converge to− 1

4(
√

5+1) and−1 which are contributions of the
−π- and 2π-kink, respectively.
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Figure 3.5: The phase portrait of the system(3.2.10)with a = 0.5 for γ = 0. The effect of the
perturbative term is shown by comparing it with the phase portrait of the unperturbed system
a = 0 shown in dashed-lines.

3.4 Lattice π-kinks and their spectra in the discrete case:
continuum approximation

Now we consider the continuous 0-π sine-Gordon equation with the continuum
approximation to the discreteness Eq. (3.2.10). Using the fact that the semifluxons
of all types are constructed by heteroclinic connections with transversal intersection
at x = 0 in the two-dimensional phase space, we can directly guarantee that all the
semifluxons still exist in the perturbed system Eq. (3.2.10)[17]. In Fig. 3.5, we present
the phase portraits of the perturbed and the unperturbed system.

For small value ofa, we can approximate the heteroclinic orbit connecting 0 and2π
(mod 2π) up to ordera2 by using the 2π-fluxonφfl and its linearization.

Lemma 3.6. Letφa
fl(x) denote the heteroclinic orbit of the sine-Gordon equation with

the perturbation term representing the continuum approximation to the discreteness
(Eq. (3.2.10)with θ ≡ 0) with γ = 0. For a small, we have for the heteroclinic
connectionφa

fl(x)

φa
fl(x) = φfl(x) + a2φa(x) + O(a4), (3.4.1)

where

φa(x) = − 1
12
−3 sinhx+ xcoshx

cosh2 x
. (3.4.2)

Furthermore,φa(x) = O(1), uniformly for x∈ R.
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3.4 Lattice π-kinks and their spectra in the discrete case:
continuum approximation

Proof. The spatially localized correction to the kink shapeφfl(x) due to the perturba-
tion term representing discreteness is sought in the form ofthe perturbation series:

φa
fl(x) = φfl(x) + a2φa(x) + O(a4).

It is a direct consequence thatφa(x) must satisfy the equation:

L1(x; 0)φa(x) = f (x) = − 1
12

(
2∂xxφ

1
π(x; 0) cos(φ1

π(x; 0)+ θ)−
(∂xφ

1
π(x; 0))2 sin(φ1

π(x; 0)+ θ) − cosφ1
π(x; 0) sinφ1

π(x; 0)
)
,

(3.4.3)

whereL1(x; 0) is the operator given in (3.3.16).

Using the variation of constants method, we obtain the general solution of (3.4.3), i.e.

φa(x) = A sechx+ B (x sechx+ sinhx), (3.4.4)

A = A0 +
1
24

[
2 ln

(
coshx− 1− sinhx
coshx− 1+ sinhx

)
+

6 sinhx
coshx

− 4 sinhx

cosh3 x
+

∫ x

0

ξ f (ξ)
coshξ

dξ

]
,

B = B0 −
1
24

[
2+

1

cosh2 x
− 3

cosh4 x

]
.

The integration constantsA0 andB0 are determined by the conditions forφa(x). Ap-
plying limx→−∞ φa(x) = 0 andφa(x) = 0 yieldsA0 = 0, B0 =

1
12. The continuity of

Dxφa(x) is automatically satisfied by its symmetry with respect tox = 0. �

Using the same procedure, the localized correction to theπ- and 3π-kink due to the
discreteness term up to orderO(a2) can be presented as follows.

Lemma 3.7. For a small andγ = 0, we have an explicit expression for theπ- and
3π-fluxon up to orderO(a2), respectively:

φ1
π(x; a; 0) = φ1

π(x; 0)+


−u1

π(x− ln(1+
√

2)), for x < 0

+u1
π(−x− ln(1+

√
2)), for x > 0

φ2
π(x; a; 0) = φ2

π(x; 0)+


−u1

3π(x+ ln(1+
√

2)), for x < 0

+u1
3π(−x+ ln(1+

√
2)), for x > 0

(3.4.5)

with φ1
π(x; 0) andφ2

π(x; 0) are given in (3.3.6) and

u1
π(x) =

1
12 coshx

(−3+ 6 cos2(
π

8
) + ln sin(

π

8
) − ln cos(

π

8
) + 3tanhx− x)

u1
3π(x) =

1
12 coshx

(3− 6 cos2(
π

8
) − ln sin(

π

8
) + ln cos(

π

8
) + 3tanhx− x).
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Due to the discreteness term, there is also correction toγ∗ andγcr [9], i.e.

γ∗(a) =
2√

4+ π2
+

2
3

π

π4 + 8π2 + 16︸              ︷︷              ︸
≈0.0109

a2 + O(a4), (3.4.6)

γcr(a) =
2
π
+

√
1− 4

π2π − π + 2 arcsin(2
π
)

3π2︸                               ︷︷                               ︸
≈0.0223

a2 + O(a4). (3.4.7)

Forγ > γcr(a), there is no static semifluxon.

3.4.1 Stability of type 1 semifluxon

We will show that the type 1 waveφ1
π(x; a; γ) is linearly stable for nonzeroa and

0 ≤ γ ≤ γcr.

The eigenvalue problem of a solutionφi
π(x; a; γ) is

Li(x; γ) v = λ2 v, (3.4.8)

whereLi(x; γ) is now defined as

Li(x; γ) = Dxx− cos(φi
π(x; a; γ) + θ(x)). (3.4.9)

The following lemma gives a necessary and sufficient condition forLi(x; γ) to have
an eigenvalueΛ = 0 for a nonzeroa.

Lemma 3.8. The eigenvalue problem

Li(x; γ)v = Λv, x ∈ R,

has an eigenvalueΛ = 0 if and only if one of the following two conditions holds

1. φi
π(0;a; γ) = kπ − a2 1

6π + O(a4), for some k∈ Z;

2. Dxφ
i
π(0;a; γ) = 0 and there are some x± such that Dxφ

i
π(x±; a; γ) , 0.

Proof. This lemma modifies Lemma 3.2 for the case of nonzeroa. The proof ismu-
tatis mutandis the same as the one of Lemma 3.2, but we have

Dxxφ
i
π(x; a) = sin(φi

π(x; a) + θ(x)) − γ+
1
12(sin(φi

π(x; a) + θ(x))(−2γ arcsinγ − 2
√

1− γ2 + γφi
π(x; a)+

cos(φi
π(x; a) + θ(x))) + cos(φi

π(x; a) + θ(x))γ)a2 + O(a4).

�
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3.4 Lattice π-kinks and their spectra in the discrete case:
continuum approximation

The first condition of the lemma is satisfied atγ = γcr(a) for i = 1, 3.

Next we will show that the spectrum of the operatorL1(x; γ) is stable for 0≤ γ ≤
γcr(a).

Lemma 3.9. For the discreteness parameter a sufficiently small and0 ≤ γ < γcr(a),
the largest eigenvalue ofL1(x; γ) is strictly negative. Forγ = γcr(a), the operator
L1(x; γcr(a)) has 0 as its largest eigenvalue. Forγ = 0, the largest eigenvalue de-
creases as a increases and is proportional to− 1

4(
√

5+ 1)− 0.0652a2 + O(a4).

Proof. Writing v(x) = v0(x)+a2v1(x)+O(a4) andΛ = Λ0+a2Λ1+O(a4) and expanding
the eigenvalue problem for the stability ofφ1

π(x; a; 0) in a Taylor series result in the
following equations

(
L1(x; 0)− Λ0

)
v0(x) = 0,

(
L1(x; 0)− Λ0

)
v1(x) =

(
Λ1 − u1

π(x) sin(φ1
π(x; 0)+ θ)

)
v0(x) − g(x),

(3.4.10)

with (see Lemma 3.3)

v0(x) =


eµ(x−ln(1+

√
2)) [tanh(x− ln(1+

√
2))− µ], for x < 0

eµ(−x−ln(1+
√

2)) [tanh(−x− ln(1+
√

2))− µ], for x > 0
,

µ =
√
Λ0 + 1, Λ0 = − 1

4(
√

5+ 1),

g(x) = 1
12

[
2v0

xxΛ0 + v0 + 2v0
xx cos(φ1

π(x; 0)+ θ) − 2 cos2(φ1
π(x; 0)+ θ)v0

−2∂xx(φ1
π(x; 0)) sin(φ1

π(x; 0)+ θ)v0 − 2∂xφ
1
π(x; 0) sin(φ1

π(x; 0)+ θ)v0
x

−(∂xφ
1
π(x; 0))2 cos(φ1

π(x; 0)+ θ)v0 − v0Λ2
0 − 2v0Λ0 cos(φ1

π(x; 0)+ θ)
]
.

The parameter value ofΛ1 is calculated by solving (3.4.10) for a bounded and de-
caying solutionv1(x). The general solution can be derived by using the variationof
constant method because we have the homogeneous solutions of the equation. One
can also use the Fredholm’s theorem (see, e.g., [18]), i.e. the sufficient and necessary
condition for (3.4.10) to havev1 ∈ H2(R) is provided that the inhomogeneity is perpen-
dicular to the null space of the self-adjoint operator ofL1(x; 0). In our case, we need
to look for the solvability condition on half of the real lineonly because solution on
the other semi-infinite domain will exist automatically andsatisfiesv1(x) = Kv1(−x),
with K is a suitably chosen constant. If<, > denotes an inner product inH2(R) over
R
+ orR−, then we obtain

< (L1(x; 0)− Λ0)v1, v0 >=< v1, (L1(x; 0)− Λ0)v0 >,

⇐ : < Λ1v0 − u1
πv

0 sin(φ1
π(x; 0)+ θ) − g, v0 >= 0,

⇐ : Λ1 =
3584(70

√
2(1+

√
5)− 99(1+

√
5))

24576(−70
√

10− 350
√

2+ 495+ 99
√

5)
≈ −0.0652. (3.4.11)
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Now assume that the operatorL1(x; γ) has a positive eigenvalueΛ1(γ) for some 0≤
γ < γcr(a). SinceΛ depends continuously onγ, there has to be some 0< γ̂ < γcr(a)
such thatΛ1(̂γ) = 0. However, from Lemma 3.8 it follows that this is not possible.

�

3.4.2 Instability of type 2 semifluxon

We are not going to proceed discussing the stability issue ofsemifluxons of this
type since the largest eigenvalue of the semifluxon is quite unstable fora → 0. In-
troducing discreteness will not immediately stabilize thesemifluxon. Here, we will
consider only the special case whenγ = 0.

Note that this semikink can be seen as a concatenation of a 3π-kink and a−2π-kink
which is clearly seen in the case ofγ = 0. For this value ofγ, the largest eigenvalue
of semifluxon of this type is equal to the largest eigenvalue of a 3π-kink.

Because a 2π-fluxon in the ’ordinary’ sine-Gordon equation can be pinnedby the dis-
creteness, one might expect to have a stable 3π-kink in the discrete 0-π sine-Gordon
equation. A stable state might exist when the repelling force between the semifluxon
and the fluxon is smaller than the energy to move a fluxon along lattices (the Peierls-
Nabarro barrier, see Remark 5.6). But for this kind of 3π-kink solution as is expressed
analytically in Eq. (3.3.6), we will show using the perturbation method that the dis-
creteness cannot stabilize this kink fora � 1. The largest eigenvalue grows even
as the discreteness parametera increases. Later on in Section 3.6, we will show nu-
merically that there is no minimum couplinga for this semifluxon to be stable. A
semifluxon of this type will always be unstable in its existence region.

Lemma 3.10. For the discreteness parameter a sufficiently small, the largest eigen-
value ofL2(x; 0) is strictly positive. Moreover, it increases as a increasesand is
proportional to 1

4(
√

5− 1)+ 0.0652a2 + O(a4).

Proof. Notice that the analytic expression of aπ- and a 3π-kink differs only in the sign
of the ’kink-shift’ (see Eq. (3.4.5)). Because of this, we can directly follow the proof
of Lemma 3.9. Writing the largest eigenvalue of a 3π-kink asΛ = Λ0 + a2Λ1+O(a4),
with Λ0 = (

√
5− 1)/4 as has been calculated in Lemma 3.4, then we computeΛ1 to

be:

Λ1 =
3584(665857(

√
5− 1)− 470832

√
2(
√

5+ 1))

24576(3329285− 2354160
√

2− 665857
√

5+ 470832
√

10)
≈ 0.0652. (3.4.12)

�

This result says that up to orderO(a4) introducing the discreteness even destabilizes a
3π-kink compared to the corresponding solution of the continuous equation.
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3.4 Lattice π-kinks and their spectra in the discrete case:
continuum approximation

3.4.3 Instability of type 3 semifluxon

Semifluxons of type 3 have been shown in Lemma 3.5 to be weakly unstable.
Then it is natural to expect that the perturbation term representing discreteness might
stabilize the semifluxon. This is however not the case.

Lemma 3.11. For all 0 < γ < γcr(a) and a small, the largest eigenvalue ofL3(x; γ) is
strictly positive. Forγ = γcr(a), the operatorL3(x; γcr) has 0 as its largest eigenvalue.

Proof. Let φ3
π(x; a; γ) represent the type 3 semifluxon for a small non-negative value

of a. The solutionφ3
π(x; a; γcr(a)) = φ1

π(x; a; γcr(a)), hence from Lemma 3.9 it follows
that the largest eigenvalue isΛ3 = 0.

We are going to follow the proof of Lemma 3.5. For this, it is necessary to scale
the parametera in Eq. (3.2.10) to

√
γa, i.e. a2 → γa2. For γ anda near zero, an

approximation for the type 3 fluxon now can be written as

φ3
π(x; γ) =



φfl(x̂) + γφ1(x̂) + γa2φa(x̂) + γ2R2(x̂; γ), x < −Lπ(γ) + x1

φfl(−x+ x1) + γφ1(−x+ x1) + γ2R2(−x+ x1; γ) + O(γa2),

−Lπ(γ) + x1 < x < 0

π + φfl(−x− x1) + O(γ, γa2), x > 0

wherex̂ = x− x1 + 2Lπ(γ).

For the largest eigenvalue, again we setΛ3(γ) = γΛ1(0).

Next, we can recalculate the results of the proof of Lemma 3.5, only now with some
additional new terms.

First, we consider the first part of the approximation of the eigenfunction, i.e. the
approximation onx < −Lπ(γ) + x1 or x̂ < Lπ(γ). In this part of the arguments, again
we drop the hat in̂x. On (−∞, Lπ), the general solution of the eigenvalue problem of
the orderO(γ) after expandingψ1

approx= ψ0 + γψ1 is

ψ1(x) = [
π

4
− 1

2
Λ1(log(coshx) +

∫ x

0

ξ

cosh2 ξ
dξ)]

1
coshx

(3.4.13)

+[
1
2
Λ1(0)+

1
2
Λ1 tanhx](

x
coshx

+ sinhx) +
1
2

(
d
dx
φ1 +

d
dx
φa

)

− ex

360(e2x + 1)3
[
16 ln 2+ e2x(32 ln 2− 295+ 60x) + 30x−

16 ln(e2x + 1)(e2x + 1)2 + 137+ e4x(151+ 30x+ 16 ln 2)+ 7e6x
]
.

We note that the error term|ψ(x) − ψ1
appr(x)| = γ2|S2(x; γ)| is still at mostO(γ) on

(−∞, Lπ).
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Next consider the second part of the approximation, i.e.,x between−Lπ(γ) + x1 and
0. Here, as before, we define the translated coordinatex − x1, which is on the inter-
val (−Lπ,−x1), and scaleψ(x) asγψ̃(x). The linearizationψ̃(x) alongφ2

appr(x) on the
interval (−Lπ,−x1) must solveLψ̃ = O(γ). Thus, at leading order

ψ̃(x) =
Ã

coshx
+ B̃(

x
coshx

+ sinhx). (3.4.14)

The last part of the approximation ofψ(x) on x > 0, ψ3
appr(x), is obtained by lineariz-

ing alongφ3
appr(x) and by translatingx so thatx ∈ (x1,∞). We also scaleψ3

appr(x),
φ3

appr(x) = γψ̂(x). However,ψ̂ must be bounded asx → ∞, which yields thatψ̂(x) =
Â/ coshx+ O(γ) for someÂ ∈ R.

After defining all parts of the approximate eigenfunction onall the real line, now we
have to connect them in aC1-fashion. This can be done for a specific combination of
Λ1(0), Ã, B̃, andÂ, i.e.

Λ1(0) = 1
4π +

7
180a

2, B̃ = −Λ1(0) < 0,

Ã = 1
4π[
√

2+ log(
√

2− 1)] > 0, Â = 1
2π
√

2 > 0.

Now, we can conclude that the eigenvalue problem for theπ-fluxonφ3
π(x; a; γ) has a

positive largest eigenvalue

Λ∗ =

(
π

4
+

7
180

a2

)
γ + O(

√
γ). (3.4.15)

Hence the eigenvalue forγ small is positive. From Lemma 3.8, it follows that there
are no zero eigenvalues between 0 andγcr, hence the largest eigenvalue ofL3(γ) is
positive for all values ofγ. �

3.5 Semikinks in the weak-coupling limit

Now we consider the discrete 0-π sine-Gordon equation (3.2.3). The time inde-
pendent equation of (3.2.3) corresponds to the so-called Standard or Taylor-Greene-
Chirikov map whenγ = 0 [19] and Josephson map whenγ , 0 [20].

In this discrete system, one would expect that the three types of semikinks discussed in
the previous sections should be present. Yet, not all of the types of the semifluxon can
be studied analytically. This is because it is not clear which semifluxons in the discrete
case that can be continued from and to the continuum limit. Most of configurations
in the discrete case will end in a saddle node bifurcation. Only the configuration that
corresponds to the type 1 semifluxon is known which in the uncoupled limit a→ ∞,
is given by

φ1
π(n;∞; γ) =


arcsinγ, n = 0,−1,−2, . . .

π + arcsinγ, n = 1, 2, 3, . . . .
(3.5.1)
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3.5 Semikinks in the weak-coupling limit

Therefore, in this section we will only discuss the type 1 semifluxon. Nonetheless,
let us denote the lattice semifluxon of typei with lattice spacinga that corresponds to
φi
π(x; γ) asφi

π(n; a; γ), n ∈ Z.

The existence of the continuation of (3.5.1) for sufficiently largea is guaranteed by
the following lemma.

Lemma 3.12. Let us denoteε = 1/a2. The steady state solution representing the
semifluxon of type 1 in the uncoupled limitε = 0, φ1

π(n;∞; γ), can be continued for a
small enough. Forγ smallγ = εγ̃, the solution up toO(ε2) is given by

φ1
π(n; a; γ) =



εγ̃ + O(ε3), n = −1,−2,−3, . . .

ε(π + γ̃) + O(ε2), n = 0,

π + ε (̃γ − π) + O(ε2), n = 1,

π + εγ̃ + O(ε3), n = 2, 3, 4 . . . .

(3.5.2)

For γ close to oneγ = 1− εγ̃, the solution up toO(ε1) is given by

φ1
π(n; a; γ) =



π/2− √ε
√

2̃γ + O(ε3/2), n = −1,−2,−3, . . .

π/2− √ε
√

2(̃γ − π) + O(ε), n = 0,

3π/2− √ε
√

2(̃γ + π) + O(ε), n = 1,

3π/2− √ε
√

2̃γ + O(ε3/2), n = 2, 3, 4 . . . .

(3.5.3)

From (3.5.3), we obtain the critical bias current for the existence of static semifluxon,
i.e.

γcr = 1− επ + O(ε2). (3.5.4)

Proof. The existence proof follows from the implicit function theorem as given in [21]
Theorem 2.1 or [22] Lemma 2.2.

To determine the critical bias current for the existence of astatic lattice semifluxon,
note thatφ1

π(n; a; 1− εγ̃) must be real. Up toO(ε), from (3.5.3) there is a restriction
for the value of̃γ for φ1

π(n; a; 1− εγ̃) to be real, i.e. for the siten = 0 wherẽγ ≤ π.
Because the other sites have no such a restriction, it can be concluded thatγcr =

1− επ + O(ε2). �

From the uncoupled solution (3.5.1), we can see that there isno solution for (3.2.3) that
represents a semifluxon sitting on a site, different from the case of kinks in the ordinary
sine-Gordon equation [23]. A 2π-kink sitting between two consecutive lattices means
that in the uncoupled system, the sites whereφ = 0 and those whereφ = 2π are
separated by a site whereφ = π. For a semifluxon, there is no such a configuration as
there is no value ofφ between 0 andπ that satisfies the uncoupled discrete sine-Gordon
equation.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Remark 5.6. In the ordinary discrete sine-Gordon equation, there is a barrier for a
kink to move in space, the so-called Peierls-Nabarro barrier [2]. The barrier is defined
as the energy difference between a kink sitting on a site and a kink sitting between
two consecutive sites. This barrier exists because 2π-kinks have space translational
invariance, while there is no such property for a semifluxon.Therefore for a lattice
semifluxon the barrier with the above definitionunlikelyexists, contrary to what was
suggested earlier in [9].

The spectral stability ofφi
π(n; a; γ) is obtained by substitutingφn = φ

i
π(n; a; γ) + vneλt

to the model equation (3.2.3). Disregarding the higher order terms gives the following
eigenvalue problem

Li(a; γ)ν = Λν, (3.5.5)

whereν = (. . . , v−1, v0, v1, . . . )T andLi(a; γ) is a linear discrete operator

Li(a; γ) = 1
a2



. . .
. . .

. . . 0

1 Ji
−1 1

1 Ji
0 1

1 Ji
1 1

0
. . .

. . .
. . .



Ji
n = −2− a2 cos

(
φi
π(n; a; γ) + θn

)
, n ∈ Z,

that corresponds to the continuous operatorLi(x; γ). This is an infinite dimensional
matrix problem which is real and symmetric. Thus, the eigenvalues must be real.

In the discrete case, the continuous spectrum of semikinks is finite. The spectrum is
obtained by substitutingvn = e−iκan to Eq. (3.5.5) withJi

n = −2 − a2
√

1− γ2 from
which one obtains the following dispersion relation for such linear waves

Λ = −
(√

1− γ2 +
4
a2

sin2(
κa
2

)

)
. (3.5.6)

Hence, we get that the continuous spectrumλ ranges in the interval±i[ 4
√

1− γ2,√√
1− γ2 + 4/a2].

Lemma 3.13. Let ε = 1/a2. Givenγ = εγ̃, for ε small enough, the largest eigenvalue
of the operator L1(a; γ) is strictly negative up toO(ε2).

Proof. The eigenvalue problem to calculate the stability of the monotonically increas-
ing series representing aπ-kink φ1

π(n;∞; γ), n ∈ Z is given by (see (3.5.5)):

L1(a; γ)ν = Λν, (3.5.7)

with ν = (. . . , v−1, v0, v1, . . . ).

72



3.5 Semikinks in the weak-coupling limit

The spatially decaying solution that corresponds to the largest eigenvalue of the above
eigenvalue problem, following Baesens, Kim, and MacKay [24] can be approximated
by

vn =


c`−n, n ≤ 0,

c`n−1, n ≥ 1,
(3.5.8)

for somec and|`| < 1. Considering the type 1 semifluxon that is given by (3.5.1),this
Ansatz is a solution of the eigenvalue problem (3.5.7) up to and includingO(ε).

For small nonzeroε, if we can match exponentially decaying solutions (3.5.8) on both
sides from either end of the lattice to a central site, then weobtain a candidate for an
eigenfunction. For|n| → ∞, Eq. (3.5.7) will determine the decay exponent`, i.e.

Λ = −
√

1− ε2γ̃2 + ε(` − 2+ 1/`). (3.5.9)

The matching condition at the central sitesn = 0, 1 is given by the relation:

Λ = − cos(ε(π + γ̃)) + ε(−1+ `). (3.5.10)

Combining (3.5.9) and (3.5.10) leads to the eigenvalueΛ and the decay exponent` as
a function ofε andγ̃, i.e.

` = 1+
1
2

(γ̃2 − (π + γ̃)2)ε + O(ε2), (3.5.11)

Λ = −1+
1
2
γ̃2ε2 + O(ε3). (3.5.12)

�

Remark 5.7. One can show that a semikink of type 1 in the weak-coupling case
has only one eigenvalue by proving that there is no antisymmetric solution to the
eigenvalue problem. This is according to Atkinson’s theorem [25] which is the discrete
version of the Sturm-Liouville theorem. According to [24],an approximation to the
eigenfunction that corresponds to the next largest eigenvalue can be given by

vn =


c`−n, n ≤ 0,

−c`n−1, n ≥ 1.

When the applied bias currentγ is close toγcr(a), we have the following stability result
of a type 1 lattice semifluxon.

Lemma 3.14. Let ε = 1/a2. Givenγ = 1 − εγ̃, for 0 < γ̃ − π � 1, the largest
eigenvalue of the operator L1(a; γ) is strictly negative up toO(ε). For γ̃ = π, the
operator L1(a; 1− εγ̃) has0+ O(ε) as its largest eigenvalue.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Proof. In the proof of Lemma 3.13, we take a symmetric approximationto the spa-
tially decaying solution of the eigenvalue problem (3.5.7). The fact that the ansatz is
symmetric is because the type 1 lattice solutionφ1

π(n;∞; γ) is symmetric up toO(ε2)
for smallγ.

Since for largeγ, φ1
π(n;∞; γ) is asymmetric up toO(ε) (see (3.5.3)), it is natural to

expect that our approximate function to the solution of (3.5.7) should also be asym-
metric. Therefore, as an Ansatz, we take

vn =


c1`
−n, n ≤ 0,

c2`
n−1, n ≥ 1,

(3.5.13)

for somec1 andc2 and|`| < 1. This is a solution of the eigenvalue problem (3.5.7) up
to and includingO(

√
ε).

Doing the same steps as in the proof of Lemma 3.13, the eigenvalue problem (3.5.7)
gives the following equations

ε(1/` − 2+ `) − Λ − sin(
√
ε2̃γ) = 0, (3.5.14)

ε(cl` − 2c1 + c2) − Λc1 − sin(
√

2ε (̃γ − π))c1 = 0, (3.5.15)

ε(c1 − 2c2 + c2`) − Λc2 − sin(
√

2ε (̃γ + π))c2 = 0. (3.5.16)

Equation (3.5.15) gives

c1 =
εc2

Λ +
√

2ε
√
γ − π − ε(` − 2)

.

Subsequently, from (3.5.14) and (3.5.16) we obtain

` = K1(̃γ)
√
ε + O(ε) ≈


(
√
π +

√
γ̃ − π)(3

√
2− 4)

2(−1+
√

2)2π
+ O(̃γ − π)


√
ε, (3.5.17)

Λ = K2(̃γ)
√
ε + O(ε) ≈



− (4
√

2− 6)
√
γ̃ − π

4− 3
√

2︸                 ︷︷                 ︸
1.4142

√
γ̃−π

+O(̃γ − π)



√
ε, (3.5.18)

with K2(π) ≡ 0.

�

3.6 Numerical computations of the discrete system

To accompany our analytical results, we have used numericalcalculations. For
that purpose, we have made a continuation program based on Newton iteration tech-
nique to obtain the stationary kink equilibria of Eqs. (3.2.3) and (3.2.4) and an eigen-
value problem solver in MATLAB. To start the iteration, one can choose either the
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Figure 3.6: Two lattice semifluxons of type 1 are plotted as a function of the lattice index,
namely the kink for a very weakly discrete arraya = 0.1 (−∗−), i.e. close to Eq. (3.3.6) and the
kink for a very strongly discrete arraya = 2 (−o−).

continuum solutions discussed in the previous section or trace the equilibria from the
uncoupled limita → ∞. We use the number of computational sites 2N = 800 for
parameter values ofa = 0.05 or larger.

3.6.1 Stability of type 1 lattice soliton

The type 1 lattice semifluxonφ1
π(n; a; γ), n ∈ Z admitted by the system for two

different values of discreteness parametera is presented in Fig. 3.6. For a given value
of a, one can use as the initial guess either a solution from the continuous limit (3.3.6)
or from the uncoupled limit that has been discussed in the preceeding sections.

In Fig. 3.7 we present the numerically calculated spectra oftype 1 semifluxon as a
function of the discreteness parameter. The approximate function (3.4.11) fora small
and the one fora large derived in Lemma 3.13 are in a good agreement with the
numerically obtained largest eigenvalue. Any eigenvalue belowΛ = −1 belongs to
the continuous spectrum. Fora close to zero we do not see dense spectra because of
the number of sites we used. By increasing the sites-number we will obtain a denser
spectrum.

There is only one eigenvalue outside the phonon bands which is in agreement with
our theoretical prediction given in Remark 5.7. This is in contrast to the case of an
ordinary lattice 2π-kink [26, 27] where there is an internal mode bifurcating from the
essential spectrum when the parametera increases.

When a bias current is applied, it has been shown that there isa critical bias current
for the existence of a static type 1 lattice semifluxon. The numerically calculatedγcr
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Figure 3.7: (upper) Numerically computed point spectrum of a lattice semifluxon againsts the
discreteness parameter withγ = 0. We used the number of sites2N = 300. We zoom in the
plot of spectra around -1 for clarity. The bold-solid-line is the calculated approximate function
for the point spectrum using perturbation theory. (lower) The eigenfunction (localized mode)
of the point spectrum fora = 1.5.

of the real discrete system (3.2.3) as a function ofa is presented in Fig. 3.8. The
approximate functions for smalla (3.4.7) and largea (3.5.4) calculated in the previous
sections are presented as dashed lines.

Our numerical computation shows that the value ofγ above which static lattice semi-
fluxons disappear is also the value ofγ at which the largest eigenvalue is zero.
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Figure 3.8: The critical bias current of a stableπ-kink as a function of the discreteness parameter
a. Forγ above the critical current there is no staticπ-kink solution. The solid line is numerically
obtained curve. Dashed lines are calculated from the case ofa� 1 and from the weak-coupling
casea� 1. For a clear explanation on the derivation of the curves see the text.
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Figure 3.9: Plot of the eigenvalues of a3π-kink as a function of the discreteness parameter
a. We zoom in the almost continuous regiona � 1 where it shows that discreteness even
destabilizes the kink. The dashed line depicts our analytically computed approximation to the
largest eigenvalue of the kink(3.4.12).

3.6.2 Instability of type 2 lattice soliton

First, the stability of a 3π-kink which is the limiting solution of lattice type 2
semifluxons whenγ→ 0, i.e.φ2

π(n;∞; 0), will be studied numerically.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

In the previous section on weak coupling limit, type 2 lattice semifluxons were not
considered becauseφ2

π(n;∞; γ) was not known in that limit. Using our continuation
program, we have followed a 3π-kink solution from the continuous limit 0< a � 1
up to the uncoupled situationa = ∞. We obtain thatφ2

π(n;∞; 0) is given by

φ2
π(n;∞; 0) =



0, n = −1,−2, . . .

2π, n = 0,

π, n = 1,

3π, n = 2, 3, . . . .

(3.6.1)

Note that this stable configuration is not monotonically increasing.

In Fig. 3.9, we present the numerically obtained eigenvalues of a 3π-kink as a func-
tion of the discreteness. For smalla, the largest eigenvalue is indeed increasing as is
predicted by the perturbation theory (3.4.12). As soon as the discreteness is of order
one, the largest eigenvalue decreases and becomes zero at approximatelya = 1.7521.

Interestingly, whenγ , 0 discreteness cannot stabilize a type 2 semikink, contraryto
the case ofγ = 0. In Fig. 3.10, we show plot of type 2 semikinks as well as their
largest eigenvalue as a function ofε = 1/a2 for two particular values ofγ, namely
γ = 0.01 andγ = 0.1. The scaling in the horizontal axis is made in that way because
an eigenvalue can have a peculiar behavior when the system isweakly coupled.

It is important to notice from Fig. 3.10 that the solutions are unstable even in the
weak-coupling limit. It is interesting because this alwaysunstable type 2 semikink is
a concatenation of a 3π-kink and a−2π-kink, while a 3π-kink has been shown to be
stable in the uncoupled limit. A−2π-kink itself can also be stable in that limit.

This instability issue can be explained by looking at the final expression of a type 2
semikink when it is uncoupled. For the two particular choices of γ above, it is given
by

φ2
π(n;∞; 0.01)=



0, n = −1,−2, . . .

π, n = 0, 1,

3π, n = 2, . . . , 8,

2π, n = 9,

π, n = 10, 11, . . . ,

(3.6.2)

and

φ2
π(n;∞; 0.1)=



0, n = −1,−2, . . .

π, n = 0, 1,

3π, n = 2, . . . , 6,

2π, n = 7,

π, n = 8, 9, . . . .

(3.6.3)
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Figure 3.10: ((a) Plot of a type 2 semikink withγ = 0.01 for two different values ofε, i.e.ε = 100
(− ∗ −) andε = 40 (−o−). (b) Plot of the largest eigenvalue of a lattice type 2 semikink as a
function of discreteness parameterε. Whenε = 0, the eigenvalue isΛ =

√
1− γ2.

We see that there are two sites, i.e.n = 0 andn = 9 for γ = 0.01 andn = 0 andn = 7
for γ = 0.1, whereφ takes the ’wrong’ value, that is of an unstable fixed point of the
mappingφ → − sinφ. Looking only at sites numberedn = 2 to n → ∞, φ2

π(n;∞; γ)
can be viewed as a−2π lattice kink sitting on a site which is known to be unstable.
If we look only at sites numberedn = 1 to n → −∞, φ2

π(n;∞; γ) can be seen as a
deformed 3π lattice kink. Hence, it can be concluded that coupling between the two
kinks due to the presence of a nonzeroγ is responsible for the instability.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

Concerning the applied bias current, it has been discussed in the previous sections that
there is a critical currentγ∗ for the existence of a type 2 lattice semikink. Neverthe-
less, we did not calculateγ∗(a) of the real discrete system (3.2.3) because it has less
physical interest asφ2

π(n;∞; γ) is always unstable.

3.6.3 Instability of type 3 lattice solution

In this subsection, we will consider lattice semikinks of type 3,φ3
π(n; a; γ), that

has been shown in Lemma 3.5 to be unstable in the continuous version.

The largest eigenvalue of a lattice type 3 semifluxon for three particular values ofγ, i.e.
γ = 0.01, 0.1, 0.55, is presented in Fig. 3.11. Even though a semifluxon of thistype
is a concatenation of a 2π-kink and a−π-kink that can be stable in the discrete case, it
is unstable as a whole from the continuous limit all the way tothe very discrete case.
The explanation is similar to the case of a lattice type 2 semikink discussed above.

For the three particular choices ofγ above,φ3
π(n;∞; γ) is given by

φ3
π(n;∞; 0.01)=



0, n = −1,−2, . . .

π, n = −6,

2π, n = −5, . . . , 0,

π, n = 1, 2, . . . ,

(3.6.4)

φ3
π(n;∞; 0.1)=



0, n = −1,−2, . . .

π, n = −2,

2π, n = −1, 0,

π, n = 1, 2, . . . ,

(3.6.5)

and

φ3
π(n;∞; 0.55)=


0, n = −1,−2, . . .

π, n = 0, 1, 2, . . . .
(3.6.6)

One interesting point to note for a type 3 lattice semikink isthat the number of sites
with value 2π is decreasing asγ increases. Starting from the continuous version of a
type 3 lattice semikink as the initial guess for the continuation program, it disappears
for γ ≥ γ∗(a) (see (3.4.6)). Its final configuration is similar to the stable π-kink (3.5.1),
but translated by one site.

3.7 Conclusions

To conclude, we have done stability analysis for three typesof latticeπ-kink of
the discrete 0-π sine-Gordon equation numerically and analytically. Analytical calcu-

80



3.7 Conclusions

−200 −150 −100 −50 0 50 100 150 200
0

1

2

3

4

5

6

n

φ n

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

Λ

γ=0.01
γ=0.10
γ=0.55

1 1.5 2 2.5 3
0

0.05

0.1

ε

Λ

(b)

Figure 3.11: The same as Fig. 3.11 but for type 3 semikink. We zoom in the region where the
largest eigenvalues oscillate.

lations have been done in the continuum limit, i.e. the 0-π sine-Gordon equation, and
the weak-coupling case. It has been shown that in the continuous 0-π sine-Gordon
equation,π-kinks of type 1 are stable and the other types are unstable. In the dis-
crete case, we have computed the spectrum of theπ-kinks and obtained the curve of
the eigenvalues as a function of the discreteness parameter. An approximate function
to the curves has been derived. For a 3π-kink, we have shown that relatively small
discreteness even destabilizes a 3π-kink.
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3 Stability analysis of solitary waves in a 0-π Josephson junction

For future research, it is of interest to see what happens to the isolated eigenvalues of
a latticeπ- and 3π-kink if we, e.g., replace the potential with the Peyrard-Remoissenet
(PR) potential [29]. Using PR potential, one might expect tohave many isolated
eigenvalues and the bifurcation of high-frequency internal modes from the continuous
spectrum [30]. The nucleation of kinks and antikinks when weapply a constant force
above the critical value is also interesting for further studies. One question that can
be addressed is the frequency of the nucleation as a functionof the applied constant
force in the presence of a damping coefficient (theα-term). Note also that even though
type 3 semifluxons are unstable, but the largest eigenvalue is close to zero. In fact, a
type 3 semifluxon consists of a fluxon and a semifluxon with the opposite polarity. In
experiments, the presence of a fluxon near by a semifluxon can influence a junction
measurement [31]. Because a fluxon can be pinned by a defect [1], one can expect to
have a stable type 3 semifluxon when there is a defect present in the system.
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4

Stability analysis of solitary waves in a tricrystal

junction





Chapter 4

We consider a tricrystal junction, i.e. a system of three long Josephson junc-
tions coupled at a common end point. The system admits solitary waves sitting
at or near the common point. Especially when one of the junctions is aπ-
junction, there is a solitary wave created at the common point. The stability
and the dynamics of all existing solitary waves of the time-independent system
are studied analytically and numerically. The present study is of interest also
for experimentalists since the system is a base for a networkof transmission
lines.

4.1 Introduction

An attractive application of Josephson junctions is their applicability for logic de-
vices based on the Josephson effect for high-performance computers [1, 2]. Employ-
ing flux quanta as information bits, the method is based on manipulating the prop-
erties, e.g. the stability, of fluxons. Nakajima, Onodera and Ogawa [3] proposed a
network of Josephson junctions that is made by several junctions connected at a point.
Following Nakajima et al., we also call this common pointthe turning point, which is
denoted by the point 0 in Fig. 4.1. The circuits allow one to control the behavior of
Josephson vortices to achieve a complete logic capability [2, 3, 4]. One of the circuits
is named STP (selective turning point) where a moving integer fluxon can be trapped
at the turning point.

Later, it is discussed in [6, 7] that the STP equation can be used to describe an edge
dislocation formed by an incomplete copper-oxide layer. The situation can be realized
during the preparation of a stacked system. The authors showthat a trapped vortex at
the turning point executes harmonic oscillations around the equilibrium position.

Recently, Kogan, Clem and Kirtley [5] considered Josephsonvortices at tricrystal
boundaries. This tricrystal problem is also described by the same equations as the
above mentioned STP circuit. In [5], the presence of a half-flux-quantumΦ0/2 vortex
is discussed when one of the three Josephson junctions is aπ-junction. They also
consider the existence of vortices with multiple half-flux-quantum 3Φ0/2 and 5Φ0/2.

Here, we will calculate analytically the stability of solitary waves admitted by a tricrys-
tal junction. Knowing the eigenvalues of a state can be of importance from an appli-
cation point of view. In the time-independent case, a staticsolitary wave of a tricrystal
junction can be sitting at or near the turning point depending on the combination of
the Josephson lengths. We will consider a general case when the Josephson lengths of
the junctionsλJ’s are not the same.
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4 Stability analysis of solitary waves in a tricrystal junction

The present chapter is organized in the following way. In Section 4.2 we will recall
the governing equations as derived in [3, 4, 5]. In Section 4.3 we discuss the stability
of integer fluxons sitting at or near the common point. This section consists of two
parts, respectively discussing one and two vortices sitting at or near the common point.
The case when one junction is aπ-junction is discussed in Section 4.4. We give the
conclusion in Section 4.5.

4.2 Mathematical Model

0

0

(a)

(b)

i
xφ

i
xφ

Figure 4.1: A sketch of two possible field distributionsφi
x of a static solitary wave in the tricrystal

junction. If the maximum field is not at the intersection point, then we say that the solitary wave
is sitting outside the intersection (a). In (b), the maximumof φi

x is achieved at the common point.

The phase difference along the junctions is described by the following perturbed sine-
Gordon equation [3, 4]

λ2
i φ

i
xx− φi

tt = sin[φi(x) + θi ], (4.2.1)

with i = 1, 2, 3, x > 0, t > 0. The position of the common end point is then atx = 0.
The parameterλi denotes the Josephson length of theith junction. The subscriptJ of
the Josephson length is omitted for brevity. The indexi numbers the junction. The
constant parameterθi represents the type of theith junction, i.e.θi equals 0 orπ. The
boundary conditions at the intersectionx = 0 are

φ1 + φ2 + φ3 = 0,

φ1
x = φ

2
x = φ

3
x.

(4.2.2)

The first equation is given by the condition that the magneticflux through an infinites-
imally small contour is zero. The second equations describethe continuity of the
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0
x

t

Figure 4.2: The evolution of a fluxon moving with velocity 0.5 towardx = 0 that is trapped at
the turning point. The plot is made in terms of the magnetic field φi

x. In the figure, to the left and
to the right ofx = 0 is junction 1 and 2, respectively. Whenλ2 = λ3, φ2 = φ3. The parameter
values we take areλ1 = λ2 = λ3. The scattered-waves can be seen as well.

magnetic fields. One reaches the same value of the field at the origin no matter along
which of the junctions the origin is approached.

The total energy that corresponds to Eq. (4.2.1) is given by [5]

H =
∑

i

∫ ∞

0

1
2

(
λiφ

i
x

)2
+ cos(θi)

(
1− cosφi

)
dx. (4.2.3)

We consider the time-independent solution of Eq. (4.2.1). The equation can admit
static localized solutions, two of which are sketched in Fig. 4.1. The magnetic field
configuration of each state is determined by the Josephson lengths of the junctions.
Here, we will calculate analytically the linear stability of those static solutions.

4.3 Conventional tricrystal junctions

The first case that we will consider is a conventional tricrystal junction which is
represented byθi = 0 for all i in (4.2.1). A fluxon moving in a conventional tricrystal
junction toward the common point can be either trapped, reflected or pass through the
point. This is the basic operation of a tricrystal junction as a logic gate proposed in
[2]. In Fig. 4.2, we show the evolution of a fluxon that is trapped by the common
point. In this case, the common point acts as a potential well. One can see that the
trapped fluxon oscillates about the common point. The oscillation frequency for the
case ofλ1 = λ2 = λ3 has been calculated in [7].
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0

x

t

(a)

0

t

x
(b)

Figure 4.3: The same as Fig. 4.2, but in the reflection (a) and the transmission (b) case. The
parameter values we take are (a)λ1 = 1 andλ2 = λ3 = 0.4; and (b)λ2 = 1, λ2 = 2 andλ3 = 0.5.
The reflection and the transmission of a2π-kink can be caused by either the instability of a
time-independent2π kink solution admitted by (4.2.1) at the same parameter values or by the
non-existence of such static solitary waves.
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4.3 Conventional tricrystal junctions

When the Josephson penetration depthλi of the junctions differs from each other, an
incoming fluxon can either pass or be reflected by the common point. Examples of
such evolutions are shown in Fig. 4.3. It is then of interest to know which combina-
tions of Josephson lengths correspond to transmission, reflection, and trapping of an
incident fluxon.

To proceed, we will assume that the incoming fluxon moves withan infinitesimal
velocity. In this case we only need to consider the existenceand the linear stability
of a time-independent solitary wave admitted by equation (4.2.1). If a static solitary
wave is stable, then it is an indication that an incident fluxon will be trapped by the
common point.

A static solution of Eq. (4.2.1) representing a 2π-fluxon sitting at or near the common
point is given by [5]

φ1
0 = 4 tan−1 e(x−x1)/λ1,

φ2
0 = 4 tan−1 e(x−x2)/λ2 − 2π,

φ3
0 = 4 tan−1 e(x−x3)/λ3 − 2π,

(4.3.1)

where thexi are determined by (4.2.2). For simplicity we scale the Josephson lengths
to

∑
λi = 1, so that we have only two free parameters, e.g.,λ2 andλ3, andλ1 =

1 − λ2 − λ3. The domain of the Josephson parameter is then bounded by thelines
λ2 = 0, λ3 = 0, andλ2 + λ3 = 1.

Expression (4.3.1) does indeed represent a 2π-kink because the total Josephson phase
is 2π when one circles the common point at large distances, i.e.

∑
i φ

i
0(∞) = 2π.

First we will derive howxi , i = 1, 2, 3, from Eq. (4.2.1) depend onλ2 andλ3. The
procedure we will present below is a summary of the steps given in [5].

Substituting (4.3.1) into the boundary conditions (4.2.2)gives the following equations

γ2η = sin 2α2, γ3η = sin 2α3,

α3 = π − α1 − α2,
(4.3.2)

where
γi = λi/λ1,

η = sin 2α1,

αi = tan−1 e−xi/λi .

(4.3.3)

After some algebraic calculations, the last equation of (4.3.2) gives the following equa-
tion for η

γ3η = η

√
1− (γ2η)2 + γ2η

√
1− η2. (4.3.4)

This equation has a positive root 0< η < 1 that is given by

η =

√
−1+ 2(γ2

2 + γ
2
3 + γ

2
2γ

2
3) − γ4

2 − γ4
3

2γ2γ3
. (4.3.5)
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4 Stability analysis of solitary waves in a tricrystal junction

The aboveη is real provided positive expression in the square root. When η is not a
real number, the same is true forxi ’s. Hence, there is no static solution representing
a fluxon sitting at or near the common point. In this case, an incident fluxon can be
either transmitted or reflected as shown in Fig. 4.3.

Once we know the value ofη for given values ofλ2 andλ3, we can calculatexi from
γiη = sin 2αi = 1/ cosh(xi/λi), i.e.

exi/λi =

1±
√

1− γ2
i η

2

γiη
. (4.3.6)

The ’±’ sign corresponds toxi < 0 andxi > 0, respectively. Solutions that satisfy the
governing equations have certain combinations of the signsof xi . If one of thexi ’s
is positive, then the configuration of the magnetic field willbe as Fig. 4.1(a), i.e. the
fluxon is sitting outside the common point.

After obtaining the value ofxi ’s for givenλi ’s, we can proceed with the stability anal-
ysis of the static solitary wave. First, we linearize about the solutionφi

0. We write
φi(x, t) = φi

0 + ui(x, t) and substitute the spectral ansatzui = eωtvi(x). Retaining the
terms linear inui gives the following eigenvalue problem

λ2
i vi

xx− (ω2 + cos(φi
0 + θ

i))vi = 0, (4.3.7)

with boundary conditions atx = 0 given by

v1 + v2 + v3 = 0,

v1
x = v2

x = v3
x.

(4.3.8)

The spectrumω consists of the continuous spectrum and the point spectrum (isolated
eigenvalues). The continuous spectrum is given by thoseω for which there exist a
solution to

λ2
i vi

xx−
{
ω2 + lim

x→∞
cos[φi

0(x) + θi ]
}

vi = 0,

i.e.
λ2

i vi
xx− (ω2 + 1)vi = 0 (4.3.9)

of the formvi = eiκx/λi , with κ real.

It follows that
ω = ±

√
−(1+ κ2). (4.3.10)

This relation is the usual dispersion relation of a linear wave in a sine-Gordon equa-
tion. This relation yields a semi-infinite continuous spectrum on the imaginary axis.

The above stability analysis shows that solution (4.3.1) can be stable. We cannot
conclude whether the solution is linearly stable or not before analyzing the point spec-
trum.

Our next task is to find the point spectrumω and the corresponding eigenfunctionvi .
The point spectrum consists of those value ofω for which there exist solutionsvi to
(4.3.7) and (4.3.8) that converge to 0 atx = ∞.
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Figure 4.4: The smallest spectral parameterµ for a standing2π-fluxon. There is an empty region
with no contour lines below the parameter domain boundaryλ2 + λ3 = 1/2. In this region there
is no standing fluxon. In the existence region, there is also an instability region indicated by the
valueµ < −1.

The eigenfunctionvi that corresponds to the eigenvalueω is of the form [8, 9]

vi(x) = cie
µ

x−xi
λi

(
tanh

x− xi

λi
− µ

)
, µ2 = ω2 + 1, (4.3.11)

where Re(µ) ≤ 0 andci needs to be determined from (4.3.8).

To obtain an expression for the eigenvalues of the fluxon state for the general case, we
have to find the zero’s of a fifth order polynomial with coefficients depending onλi ,
i = 1, 2, 3. We derive the form of this polynomial in the Appendix.

When all the Josephson lengths are the same, thenxi = −λi ln
√

3, i = 1, 2, 3. In this
special case, the roots of the polynomial are

µ =
1
2
,
1±
√

13
4

.

The last two roots have multiplicity two. The eigenvalue is then obtained by recalling
that Re(µ) ≤ 0 andµ2 = ω2 + 1 from which we obtain

ω = ±i

√
1+
√

13
8

, (4.3.12)

which is in agreement with [6].

The spectral parameterµ for the general case ofλ2 andλ3 is shown in Fig. 4.4.

It is interesting to note that our parameter domain is bounded by the lineλ2 + λ3 = 1.
Yet, there is a region in that parameter domain where the expression within the square
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4 Stability analysis of solitary waves in a tricrystal junction

root of (4.3.5) has negative values, which means that there is no static solitary wave
satisfying Eq. (4.2.1) and (4.2.2). In Fig. 4.4, this regionis shown as an empty space.
This existence region is bounded by linesλ2 = 1/2, λ3 = 1/2, andλ2 + λ3 = 1/2.
There is also an instability region in the existence domain that corresponds toµ < −1.
In the region, the magnetic field configuration is as Fig. 4.1(a).

Whether there is a static standing fluxon, but unstable, or there is no static fluxon for
a given combination of parameter values, a fluxon moving toward the common point
in a tricrystal junction with those parameter values will not be trapped.
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Figure 4.5: The smallest spectral parameterµ for a standing4π-fluxon. It is clear that in all the
existence region the state is unstable. It means that there is no possibility to trap two fluxons at
the common point.

Next we will consider the linear stability of two fluxons sitting at or near the common
point. If we can find a combination of Josephson lengths that gives a stable 4π-kink,
then two incident fluxons in a tricrystal junction can be trapped by the common point.
The stability calculation can be done as before. A solution that corresponds to a static
4π-kink state is given by

φ1
0 = 4 tan−1 e(x−x1)/λ1,

φ2
0 = 4 tan−1 e(x−x2)/λ2,

φ3
0 = 4 tan−1 e(x−x3)/λ3 − 2π.

(4.3.13)

The spectrum parameterµ of a 4π-state in the (λ2, λ3)-plane is shown in Fig 4.5. This
state has the same existence domain as a 2π-state. Since the largest eigenvalue is
always positive in the existence region, then two fluxons cannever be trapped at the
same time by the common point.

For three standing fluxons, we find that there is no static solution representing such a
state.
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4.4 Tricrystal junctions with a π-junction

Figure 4.6: (A) Tricrystal experimental geometry of a YBCO film grown on atricrystal SrTiO3

substrate used in [10]. The crystalline orientations of thetricrystal were chosen such that the
system is frustated. (B) Scanning SQUID microscope images of the π-fluxon in the film for
various ambient temperature (Josephson lengthλJ). This picture is courtesy of J. R. Kirtley.

4.4 Tricrystal junctions with a π-junction

In the next problem we address, one of the junctions is aπ-junction. This problem
appears in superconducting tricrystals withd-wave symmetry [11]. Josephson bound-
aries between anisotropic superconductors with thed-wave symmetry is sensitive to
crystalline misorientation. In a particular case, the phase difference can have a phase
addition ofπ.

In the presence of a phase-jump ofπ in the phase difference of one junction, the spon-
taneously generatedπ-kink is the ground state of the system [5]. Therefore, the pres-
ence of aπ-kink is used to probe the unconventional symmetry of the order parameter
in novel superconductors [12, 13]. Only recently it is proposed to use half-flux quanta,
but in a different system, in superconducting memory devices [14]. We show in Fig.
4.6 a scanning SQUID microscope image of aπ-fluxon in a tricrystal junction.

The problem is described by takingθ1 = π andθ2,3 = 0 in Eq. (4.2.1). A static solution
representing aπ-kink, which is the ground state of the system, is given as

φ1
0 = 4 tan−1 e(x−x1)/λ1 − π,
φ2

0 = 4 tan−1 e(x−x2)/λ2 − 2π,

φ3
0 = 4 tan−1 e(x−x3)/λ3 − 2π.

(4.4.1)

Like before, we need to determinexi , i = 1, 2, 3 by requiring (4.4.1) to satisfy the
boundary conditions (4.2.2). Definingη as in (4.3.2) and (4.3.3), we arrive at the
following equation [5]

√
(1− η2)(1− λ2

2η
2) − λ2η

2 = λ3η. (4.4.2)
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Figure 4.7: The smallest spectral parameterµ for a π-fluxon. It is clear that in all regions the
state is stable. The region above the lineλ2 + λ3 = 1 is not a physical region since in this region
λ1 < 0 due to our scaling

∑
λi = 1.

In a special case when allλi = 1/3, we obtainxi = λi ln(2−
√

3) < 0. In this case the
parameterµ [see (4.3.11)] is given by

µ =

√
3−
√

7
4

from which we obtain the following eigenvalues

ω = ±i
3+
√

21
8

≈ ±0.9478i. (4.4.3)

These eigenvalues have double multiplicity. For the general case, the parameterµ in
the (λ2, λ3)-plane is shown in Fig. 4.7. It is not surprising that the existence and the
stability region of aπ-fluxon are the same as the parameter domain. It is because a
π-fluxon is the ground state of the system.

Kogan, Clem and Kirtley [5] also consider the presence of (2n+ 1)π-fluxon in system
(4.2.1) withn = 1, 2. This state is rather interesting since for some combinations of the
Josephson lengths, a 3π-fluxon has a lower energy than a combination of aπ-fluxon at
the common point and a 2π-fluxon at infinity [5]. From this energetical reasoning, it
was stated that there might be a stable 3π-fluxon in a tricrystal junction. Yet, we found
that a 3π-fluxon is unstable. Only with some combinations that are unphysical we can
have a 3π-state with the largest eigenvalue zero.

It has been shown by Kogan et al. [5] that there are two possible configurations rep-
resenting a 3π-fluxon, i.e. configuration with one ’+’ and two ’+’s in the sign-set
(sign(x1),sign(x2),sign(x3)). For given values ofλi , a solution with two+’s has a
higher energy than its corresponding solution with one+. In Fig. 4.8(a), we show
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Figure 4.8: (a) The sign-set diagram(sign(x1), sign(x2), sign(x3)) for a 3π-fluxon. This picture
corresponds to Fig. 4 in [5]. (b-c) Similar pictures as Fig. 4.7 for a 3π-fluxon with (b) one
positive xi and (c) two positivexi ’s. From the picture we know that zero can be the largest
eigenvalue of a3π-kink, i.e.µ = −1, but only at unphysical combinations of Josephson lengths,
e.g. whenλi is exactly1/3.
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Figure 4.9: The same picture as Fig. 4.7 but for a5π-fluxon. Because the smallestµ is always
less than -1 for any combinations of Josephson lengths, thenthere is no stable5π-kink.

the sign-set diagram showing combinations of signs ofxi that are needed for a so-
lution to satisfy the governing equations.The parameterµ for this state is shown in
Fig. 4.8(b,c). In the evolution of this state in time, a 3π-fluxon will dissolve into aπ-
and a 2π-fluxon.

We have also considered the existence and the stability of a static 5π-fluxon which is
represented by

φ1
0 = 4 tan−1(e(x−x1)/λ1) − π,
φ2

0 = 4 tan−1(e(x−x2)/λ2),

φ3
0 = 4 tan−1(e(x−x3)/λ3).

(4.4.4)

We find that it is even more unstable than a 3π-fluxon. The parameterµ is shown in
Fig. 4.9.

A static 7π-fluxon does not exist in a tricrystal junction with a singleπ-arm.

Using the same analysis, one can show that the 3π state can be stable in a tetracrys-
tal junction with oneπ-arm. Experimental reports of these tetracrystals can be read in
[11]. An experimental scanning SQUID microscope image of aπ-fluxon in a tetracrys-
tal junction is shown in Fig. 4.10. One can also calculate that the 5π state will be
linearly stable in pentacrystals with oneπ-arm. Therefrom we conjecture that a stable
(2n+ 1)π state exists in 2(n+1) or more junctions connected to a joint with one of the
arms is aπ-junction. All the stable states require the maximum field tobe at the joint
(see Fig. 4.1(b)).
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Figure 4.10: A scanning SQUID microscope image of aπ-fluxon in a Tl2Ba2CuO6+δ film grown
on a tetracrystal SrTiO3 substrate. This picture is courtesy of J. R. Kirtley.

4.5 Conclusions

To summarize, we have discussed the existence and the (in)stability of all possible
states in a tricrystal junction. The stability analysis presented here should be applica-
ble to other Josephson junction systems. We also have predicted that a multicrystal
junction with 2(n+ 1) or more arms with one of the arms is aπ-junction can have a
stable (2n + 1)Φ0/2 vortex. This stability analysis is important for experimental in-
vestigations of the order parameter symmetry in novel superconductors. Such systems
can also be used in high-performance computers.

Appendix: Polynomial equation of the spectral parameter µ

The parameterµ that gives eigenvalues of a static kink is obtained by requiring
(4.3.11) to solve (4.3.8). The unknown constantci cannot be zero for alli asvi

, 0.
To get rid of the trivial solution, we set, for instance,c1 = 1.

From equations (vi + v2+ v3)|x=0 = 0 and (v1− v2)|x=0 = 0 (see (4.3.8)), we obtain that

c2 =
e−

x1
λ1
µ(−µ tanh(x1

λ1
) − µ2 + sech2( x1

λ1
))

e−
x2
λ2
µ(−µ tanh(x2

λ2
) − µ2 + sech2( x2

λ2
))
,

c3 = −
e−

x1
λ1
µ
(
tanh(x1

λ1
) + µ

)
+ c2e−

x2
λ2
µ
(
tanh(x2

λ2
) + µ

)

e−
x3
λ3
µ(+ tanh(x3

λ3
) + µ)

.

The last equation of (4.3.8) (v2 − v3)|x=0 = 0 will then give the following fifth order
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polynomial equation of the parameterµ, i.e.

5∑

i=0

Aiµ
i = 0,

with

A5 = 3 cosh(x1
λ1
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)2 cosh(x3

λ3
) − 2 sinh(x1

λ1
) cosh(x1

λ1
) cosh(x2

λ2
)2−

2 sinh(x3
λ3

) cosh(x1
λ1

)2 cosh(x3
λ3

) − 2 sinh(x2
λ2

) cosh(x2
λ2

) cosh(x3
λ3

)2−
2 sinh(x1

λ1
) cosh(x1

λ1
) cosh(x3

λ3
)2 − 2 sinh(x2

λ2
) cosh(x1

λ1
)2 cosh(x2

λ2
),

A1 = cosh(x1
λ1

)2 + cosh(x2
λ2

)2 + cosh(x3
λ3

)2−
2 sinh(x2

λ2
) sinh(x3

λ3
) cosh(x2

λ2
) cosh(x3

λ3
)−

2 sinh(x3
λ3

) sinh(x1
λ1

) cosh(x1
λ1

) cosh(x3
λ3

)−
2 sinh(x2

λ2
) sinh(x1

λ1
) cosh(x1

λ1
) cosh(x2

λ2
),

A0 = sinh(x2
λ2

) cosh(x2
λ2

) + sinh(x1
λ1

) cosh(x1
λ1

) + sinh(x3
λ3

) cosh(x3
λ3

).

Only roots of the polynomial with negative real part correspond to an eigenvalue of
the considered state.
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Chapter 5

We consider a modified sine-Gordon equation with phase shifts. At the point
of the shifts, fractional kinks can be created. In the particular case of periodic
phase shifts, there is a chain of fractional kinks. Here, we introduce and study
numerically fractional kink lattices and their energy bands. Analytical calcu-
lations are presented for the particular case of chains of integer (anti)kinks
and kinks-antikinks in the absence of an applied bias current. Knowledge of
band-structure is important for the design of devices that are based on frac-
tional vortices. Because such a system can be realized in experiments and has
a wide range of controllability properties, we also proposeit as an artificial
vortex crystal with controllable energy bands.

5.1 Introduction

A sine-Gordon equation is known to be an important model withapplication in
many branches of modern physics, extending from condensed matter systems, liquid
crystals, to quantum field theory. For a rather complete review see [1] and the ref-
erences therein. A crucial property of the equation is its integrability that permits an
analytic determination of the corresponding physical quantities. In condensed matter
systems, sine-Gordon equations appear in the theory of longJosephson junction that
describe the tunneling of Cooper pairs across a barrier between two superconductors
[2]. In the study of Josephson junctions, the sine-Gordon phase represents the phase
difference between two neighboring superconductors and the fundamental topological
kink solution expresses one magnetic flux quantumΦ0 ≈ 2.07× 10−15 Wb.

Bulaevskii, Kuzii, and Sobyanin [3] proposed a Josephson system with a phase-shift
of π in the sine-Gordon phase due to the presence of magnetic impurities. The system
can admit a half of magnetic flux quantum or semifluxon attached to the point of the
phase jump. Recent technological advances can introduce this phase shift in a long
Josephson junction using, e.g., superconductors with unconventional pairing symme-
try [4, 5], Superconductor-Ferromagnet-Superconductor (SFS)π-junctions [6], and
Superconductor-Normal metal-Superconductor (SNS) junctions [7]. A recent work
reports a successful experiment on artificial phase shift inJosephson junctions made
of standard superconductors [8]. In this experiment, the phase shift can be tuned to be
of any value and, hence, one can obtain an arbitrary fractional magnetic flux quantum.

Here, we consider a particular case of Josephson junctions with periodic phase shifts.
We study fractional kink lattices and their energy bands that correspond to the oscilla-
tions of the chains.
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5 Fractional kink lattices and their bandgap structures

It is of interest to consider and understand such a system because it can be proposed
as an artificial periodic structure. This is due to its great degree of control over its
electronic properties either at the design time by choosingthe distance between vor-
tices or, during experiment, by varying the bias current or the topological charge of the
vortices. It can be a useful utility in understanding crystals, while the study of crystals
is known to be a central theme of solid state physics [9, 10, 11].

Besides the motivation mentioned above, the present study is also of importance be-
cause knowledge of band structures is a key element in designing classical and quan-
tum devices based on fractional vortices. In the classical domain this can help either
to avoid resonance phenomena or even to exploit them (e.g. infilters and detectors).
In the quantum domain, the absence of an acoustic branch can be a crucial obstacle
for thermal excitation of plasma oscillations.

This chapter is organized as follows. In Sec. 5.2, we explainthe considered mathemat-
ical model and the numerics that we use. This section will give also an introduction to
the aforementioned arbitrary fractional kinks, before further discussions on fractional
kink lattices. We consider two fundamental arrangements ofperiodic phase shifts
that admit two particular solutions existing also in the ordinary sine-Gordon equation,
namely rotating and oscillating solutions. We overview analytical results that have
been established for the particular caseκ = 2π andγ = 0 in Sec. 5.3. Some numerical
results for the general value of phase shiftκ are discussed in Sec. 5.4. Conclusions of
the present study are given in Sec. 5.5.

5.2 Mathematical model and numerical methods

5.2.1 Fractional kinks in a junction with a single phase shif t

First, we consider the problem of Josephson junctions with asingleκ phase shift,
which is usually called as a 0-κ Josephson junction. This is the building block for a
more general description.

The dynamics of the Josephson phaseφ(x, t) in a 0-κ long junction is described by

φxx− φtt = sin(φ + θ(x)) − γ, (5.2.1)

with

θ(x) =


0, x < 0,

−κ, x > 0.
(5.2.2)

All variables and parameters are in dimensionless form. Without loss of generality,
we can assume that 0≤ κ ≤ 2π.

The boundary conditions atx = 0 are given by the continuity conditions

lim
x→0−

φ(x) = lim
x→0+

φ(x),

lim
x→0−

φx(x) = lim
x→0+

φx(x).
(5.2.3)
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5.2 Mathematical model and numerical methods

The presence of thisκ discontinuity can result in the formation of a fractional vortex
pinned atx = 0, as is confirmed experimentally and reported in, for instance, [5, 8].
This spontaneous formation is to compensate the−κ phase jump. A kink solution of
(5.2.1) and (5.2.2) that represents a fractional vortex with topological chargeκ is given
by

φκ(x) =


4 arctanex+x0, x < 0,

κ − 4 arctane−x+x0, x > 0,
(5.2.4)

with
x0 = ln tan

κ

8
. (5.2.5)

The kink solution (5.2.4) is stable. The eigenvalue of thatφκ(x) can be calculated
analytically1. The eigenvalue problem of the solution is obtained by substituting the
spectral ansatzφ = φκ + eiωtε(x) into Eq. (5.2.1) and linearizing about the solution
φκ(x). We will then obtain

εxx −
[
cos(φκ + θ) − ω2

]
ε = 0. (5.2.6)

The solution of the above eigenvalue problem that corresponds to the smallest eigen-
value ofφκ is given by

ε(x) =


ε−(x) = e

√
1−ω2(x+x0)

(
tanh(x+ x0) −

√
1− ω2

)
, x < 0,

ε+(x) = ε−(−x), x > 0,
(5.2.7)

with the smallest eigenvalueω is

ω2 =
1
2

cos
κ

4

(
cos

κ

4
+

√
4− 3 cos2

κ

4

)
. (5.2.8)

Plot of this eigenvalue as a function ofκ is shown in Fig. 5.1. For the particular case

of κ = π, the eigenvalue of a semifluxon isω(π) = 1
2

√
1+
√

5 ≈ 0.899.

The fact that a stable fractional kink does not move in space and is attached to the
point of the phase shift is shown by its nonzero eigenvalue. The spectral parameterω
can be zero if and only ifκ = 2π because at this value ofκ, we have an ordinary 2π
kink that is translational invariant in space.

5.2.2 Fractional kink lattices in a junction with periodic p hase shift

After briefly considering a Josephson junction with a singlephase shift, we con-
sider the problem of Josephson junctions with periodic phase shift. Here, we consider

1 The procedure of calculating the smallest eigenvalue of the solution can be exactly following the
steps presented in Chapter 3 of this thesis.
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Figure 5.1: Plot of the eigenvalueω of a singleκ-vortex given by Eq. (5.2.8) versusκ [continuous
line] and its approximations forκ → 0: ω(κ) ≈ 1 − κ4/256 [dashed line] and forκ → 2π:
ω(κ) ≈ 1

4(2π − κ) [dotted line].

two basic periodic arrangements that support solutions existing up toκ = 2π. Those
two arrangements are represented by

θ(x) =



. . . , . . . ,

−κ, −a < x < 0,

0, 0 < x < a,

κ, a < x < 2a,

2κ, 2a < x < 3a,

. . . , . . . ,

(5.2.9)

and

θ(x) =


−κ, . . . ,−a < x < 0, a < x < 2a, . . . ,

0, . . . , 0 < x < a, 2a < x < 3a, . . . ,
(5.2.10)

wherea is the distance between two consecutive discontinuities.

There are many static solutions of (5.2.1) combined withθ(x) defined by either (5.2.9)
or (5.2.10) forκ , 0, 2π. But in this work, we only consider a particular solution of
the equation that can be continued up toκ = 2π.

For Eq. (5.2.1) withθ(x) defined by (5.2.9), we consider a solution representing a
lattice of fractional kinks with uniform topological charge that is ordered ferromag-
netically. In the time-independent sine-Gordon equation,it corresponds to a rotating

110



5.2 Mathematical model and numerical methods

solution. While forθ(x) given by (5.2.10), the solution we consider is antiferromagnet-
ically ordered fractional kinks that corresponds in the ordinary sine-Gordon equation
to an oscillating solution.

Considering only those two particular solutions, the two above periodic arrangements
of θ(x) with periodic boundary conditions correspond respectively to

θ(x) = 0, 0 < x < a, (5.2.11)

with boundary conditions

lim
x→0

φ(x) = κ + lim
x→a

φ(x),

lim
x→0

φx(x) = lim
x→a

φx(x),
(5.2.12)

and

θ(x) =


0, 0 < x < a,

−κ, a < x < 2a,
(5.2.13)

with boundary conditions

lim
x→{0,a−}

φ(x) = lim
x→{2a,a+}

φ(x),

lim
x→{0,a−}

φx(x) = lim
x→{2a,a+}

φx(x).
(5.2.14)

Note that our infinite domain in the original system becomes finite with lengthL = a
for (5.2.11)-(5.2.12) andL = 2a for (5.2.13)-(5.2.14). Both systems can be realized
in experiments using an annular Josephson junction with couple pair-injectors as ex-
plained in [8, 12, 13].

5.2.3 Numerical methods

To calculate numerically the oscillatory energy bands of a chain of fractional vor-
tices, we use a transfer matrix approach approximated by theEuler-forward method
that will be briefly reviewed below. The reader interested inthe numerics is referred
to, e.g., [14] for more complex and delicate methods.

Suppose we want to study the band structure of a static solution φ0(x) satisfying
Eq. (5.2.1) for a given arrangement ofθ(x) and given values ofκ, a, andγ.

Written as a system of first order equations, the eigenvalue problem (5.2.6) takes the
form

~εx = A~ε, (5.2.15)

with

~ε =


ε

εx

 and A(x) =


0 1

cos
[
φ0(x) + θ(x)

]
− ω2 0

 . (5.2.16)
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5 Fractional kink lattices and their bandgap structures

As a consequence of the Floquet-Bloch theorem, a periodic solution of Eq. (5.2.15)
will satisfy

~ε(x+ L) = C~ε(x),

with C is a constant matrix andL is the periodicity of the lattice.

We approximateA(x) with a constant matrixAn given by Eq. (5.2.16) withx = xn =

n∆x on interval∆x from xn to xn+1. We use several spatial discretization steps to
compare results obtained from the numerics, i.e.∆x = 0.1, 0.05, 0.02. The so-called
principal matrixC is then approximated by the following transfer matrix discretization

C =
N∏

n=1

exp(∆x An), (5.2.17)

whereN = L/∆x is the number of discretization in the computational domain.

The transfer matrixC has two eigenvalues. The product of the eigenvalues satisfies
the relation

λ1λ2 = detC =
N∏

n=1

det e∆x An =

N∏

n=1

eTr(∆x An) = 1,

where we have used an identity det[exp(M)] = exp[Tr(M)] and the fact that Tr(A) = 0
(see Eq. (5.2.16)). The spectral parameterω lies within the energy band if and only
if λ1,2 is a pair of complex-conjugate roots laying on the unit circle in the complex
plane, i.e.|λ1| = |λ2| = 1.

5.3 Analytical calculations for the case of κ = 2π and γ = 0

Before discussing band-gap structures of a periodic solution with general value
of κ, we will make an overview over band-gap structures of periodic solutions for the
limiting caseκ = 2π andγ = 0 that have been well-established analytically. A rather
complete discussion of the results presented here can be found in [15, 16].

The simplest stable solution of the sine-Gordon equation isthe even multiple ofπ. The
band structure of this constant background consists of a forbidden band that ranges in
the region 0< ω2 < 1 and an allowed bandω2 > 1. A 2π-kink solution (5.2.4)
also has the same band structure but with an isolated eigenvalues atω2 = 0 and
ω2 = 1. When we have an infinite array of periodic 2π-kinks supported by the time-
independent equation of (5.2.1), calculations of the band structure are not trivial, as
will be shown below.

5.3.1 Ferromagnetically ordered fractional kinks

First, let us consider a lattice of ferromagnetically ordered integer kinks. A rotat-
ing solution that corresponds to it of the first integral of Eq. (5.2.1)

1
2

(
∂φ

∂x

)2

= 1− cosφ + A (5.3.1)
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5.3 Analytical calculations for the case of κ = 2π and γ = 0

is given byA > 0. The solution can be expressed analytically as

φ(x) = π + 2 am

(
(x− x0)

k
, k

)
, k2 =

2
2+ A

, (5.3.2)

where the period of the kink latticea is related tok by

a = 2kK
(
k2

)
. (5.3.3)

K(k2) denotes the complete elliptic integral of the first kind (see the Appendix). The
parameterx0 in (5.3.2) can be of any constant value here.

For a periodic array of kinks (5.3.2), the eigenvalue problem (5.2.6) then takes the
form {

d2

dx̄2
+ k2

(
ω2 + 1

)
− 2k2 sn2(x̄, k2)

}
ε(x̄) = 0 , (5.3.4)

with x̄ = x/k and sn( ¯x, k2) is the Jacobi elliptic function defined in the Appendix. The
boundary conditions forε(x) are given by

ε
(
x̄+

a
k

)
= ε(x̄) . (5.3.5)

Equation (5.3.4) is a Lamé-type equation that admits two linearly independent solu-
tions given by

ε±η(x̄) =
σ(x̄+ iK′ ± η)
σ(x̄+ iK′)

e∓ x̄ζ(η) , (5.3.6)

whereη is defined as a root of

P(η) =
2− k2

3
− k2ω2 . (5.3.7)

The Weierstrass functionsP(u), ζ(u) andσ(u) are defined in the Appendix.

Because of the periodic potential, we have the Floquet-Bloch theorem which says that

ε±η(x̄+ 2K) = e±iF(η) ε±η(x̄) ,

with
F(η) = 2i

[
K ζ(η) − η ζ(K)

]
. (5.3.8)

The allowed band is given by the value ofω whereF(η) ∈ R, i.e.

0 < ω2 <
1
k2
− 1 and ω2 >

1
k2

. (5.3.9)

In this region,F(η) goes from 0 toπ with η = K + iy andy ranges between 0 andK′.

Correspondingly, the forbidden bands are given by those values ofη for which F(η)
has a non vanishing imaginary part, i.e.

ω2 < 0 and
1
k2
− 1 < ω2 <

1
k2

. (5.3.10)
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5 Fractional kink lattices and their bandgap structures

In this region,η = iy with F(η) has a purely imaginary value fromπ to infinity.

After calculating the continuous band-gap structures, onecan also impose the period-
icity of the boundary conditions (5.3.5) onε(x) to obtain the eigenvalues of the kink
structures. In this case,F(η) is then an even multiple ofπ. The eigenvalues are given
by ω2

0 = 0 with multiplicity one which is associated to the translational invariance
property of the solution, and the infinite series of points with multiplicity two

ω2
n ≡

1
k2

[
2− k2

3
− P(iyn)

]
(5.3.11)

whereyn determined by

F(iyn) = 2K i ζ(iyn) + 2yn ζ(K) = 2nπ , n = 1, 2, . . . (5.3.12)

These eigenvalues lie in the bandω2 > 1
k2

In the limit a→ ∞, the above band structure goes to the one of a 2π-kink. The allowed
band 0< ω2 < 1

k2 − 1 shrinks to the isolated eigenvalueω2
0 = 0 and the other allowed

bandω2 > 1
k2 becomes the continuous spectrumω2 > 1.

5.3.2 Antiferromagnetically ordered fractional kinks

An oscillating solution that corresponds to an antiferromagnetically ordered kinks
of the first integral (5.3.1) is given by−2 < A < 0. The solution can be expressed
analytically as

φ(x) = 2 arccos[ksn
(
x− x0, k

)
] , k2 = 1+

A
2
, (5.3.13)

where the facet lengtha is related tok by

a = 2K
(
k2

)
. (5.3.14)

For this periodic (antiferromagnetically ordered) kink-antikink (5.3.13), the eigen-
value problem will take the form

{
d2

dx2
+ ω2 + 1− 2k2 sn2(x, k2)

}
ε(x) = 0 . (5.3.15)

The solutions of this eigenvalue problem are almost the sameto the ones of the eigen-
value problem for ferromagnetically ordered kinks. The difference between the solu-
tions is presented in the Appendix.

Following the same steps as above, one will obtain the allowed band of the periodic
solution, i.e.

k2 − 1 < ω2 < 0 and ω2 > k2. (5.3.16)
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The presence of negativeω2 informs us that a periodic integer kink-antikink solution
is unstable. A similar calculation for the forbidden band will give

k2 − 1 > ω2 and 0< ω2 < k2. (5.3.17)

Imposing the boundary conditions to the eigenfunctionε(x), i.e. selecting the values
of ω2 for which the Floquet exponent is an even multiple ofπ, we obtain the simple
eigenvaluesω2

0 = 0 and
ω2

1 = k , (5.3.18)

and the infinite series of double eigenvalues

ω2
n ≡

2k2 − 1
3

− P(iyn) (5.3.19)

in the bandω2 > k2, with yn defined by

F = 2K i ζ(iyn) + 2yn ζ(K) = 2nπ , n = 2, 3, . . . . (5.3.20)

5.4 Numerical results on the band-gap calculation

After considering the limiting caseκ = 2π, a natural question is then how the
band structure of a periodic lattice ofκ-kinks for a general value ofκ , 2π. Below
we present some numerical results using the numerical scheme explained in Sec. 5.2.3
above.

5.4.1 Ferromagnetically ordered fractional kinks

First, let us consider ferromagnetically ordered fractional kinks of the Josephson
system (5.2.1) with periodicity (5.2.9) in the absence of bias currentγ. Whenκ = 2π,
this state corresponds to the so-called flux-flow regime (in amoving coordinate) [17].
This particular state has received considerable interest in view of practical applications
of Josephson transmission lines as submilimeter band oscillators.

Band structures as a function ofκ calculated numerically for some values ofa, i.e.
a = 1, 2, 5 are shown in Fig. 5.2. In all plots one can see that in the absence of
discontinuities (κ = 0) the junction has a band gap for 0< ω < 1 and a single infinite
plasma band forω > 1 as is calculated analytically. Asκ increases, fractional vortices
appear. Each vortex when isolated (a→ ∞) has an eigenvalueω(κ) < 1 (5.2.8). But
when the vortices are coupled (a is finite), the eigenvalues form a band. Interestingly,
periodic fractional kinks withκ , 0, 2π have band gaps that do not exist in the limit
κ = 0, 2π. As the distancea decreases, the allowed bands broaden, while the gaps
shrink and shift to higher frequencies, as can be seen in consecutive Figs. 5.2(a)–(c).

As has been calculated analytically in the previous section, there are only two forbid-
den bands whenκ = 2π for a given value of facet lengtha. For a general value of
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5.4 Numerical results on the band-gap calculation

Figure 5.3: Numerically calculated band structure of ferromagnetically ordered fractional kinks
as a function of the applied bias currentγ for κ = π and (a)a = 5 and (b)a = 2. There is a
critical value ofγ = γc(a, κ) above which the static crystal becomes unstable.

κ , 2π, our numerical results show that a solution might have an infinitely many band
gaps.

We also have considered the influence of bias current to the band structure at various
fixed values ofa and κ = π. This case is interesting for a Josephson system with
discontinuities that cannot be controlled during experiment, e.g. a ramp-type 0-π long
Josephson junction. In Fig. 5.3, we present the band structure of a periodicπ-kink
lattice witha = 5 anda = 2.

For a givena, there is a critical value ofγc(a) at which the static solution becomes
unstable. The lowest edge of the first band tends to 0 whenγ→ γc(a). Forγ > γc(a),
there is no static lattice fractional kinks. The system willswitch to a finite voltage
state.

5.4.2 Antiferromagnetically ordered fractional kinks

After considering the case of ferromagnetically ordered fractional kinks, we now
study antiferromagnetically ordered fractional kinks of the Josephson junction system
(5.2.1) with periodic phase shift (5.2.10).

In Fig. 5.4, the bands of a fractional kink-antikink latticeare traced fromκ = 0 to
κ = 2π. There is a critical value ofκ = κc(a) at which the lowest edge of the first
allowed band touches zero, i.e.ω → 0 whenκ → κc. At that value ofκ, the antifer-
romagnetically state is unstable and in the time-dependentequation, it will turn into a
complimentary state [18].

The band structure of the complimentary state is the mirror reflection of the one shown
in Fig. 5.4 with respect to the lineκ = π. Therefore, in the interval 2π − κc(a) < κ <
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5.5 Conclusions

Figure 5.5: The same as Fig. 5.3 but for antiferromagnetically ordered fractional kinks.

κc(a), there are two stable solutions: an antiferromagnetically chain of direct vortices
and its complementary solution.

The value ofκc(a) decreases as the coupling increases withκc→ π whena→ 0. This
is in agreement with the known result [19, 20] that the infinite antiferromagnetically
ordered semifluxon chain is stable for anya→ 0.

We also have done numerical calculations on the band structures of a chain of frac-
tional kinks under the influence of an applied bias current. We present the results in
Fig. 5.5. By applying a bias current, an additional gap can open within each band.

5.5 Conclusions

To conclude, we have calculated the energy bands corresponding to small os-
cillations of the 1-dimensional periodic fractional vortex crystal as a function of the
discontinuityκ, the bias currentγ, and the distance between two neighboring discon-
tinuity pointsa. Such a 1-dimensional vortex crystal has an optical branch and no
acoustic one in the dispersion relation, which is a direct consequence of the vortex
pinning κ . 2π. Our numerical results show that the bands of a periodic lattice of
fractional kinks have more structures than a lattice of periodic integer kinks.

We have shown numerically that band structures can be controlled by changingκ. In
the case of discontinuities created artificially by injectors, one can make a wiring such
that the valueκ for all discontinuities can be changed at the same time by using a
single control current. It thus provides the possibility tochange the band structure
”on-the-fly”. For natural 0-π long Josephson junctions (see, e.g., [5]) with a fixed
the discontinuityκ = π, the band structure can also be smoothly controlled during
experiment by an applied bias current.

Here, we only considered the spectrum of a mirror symmetric crystal. However,
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unusual properties can be expected from systems with brokenreflection symmetry
(ratchets) [21, 22], such as crystals of ferroelectrics or of some superconductors [23].
From this point of view, the transport in such systems is not well studied. Using an ar-
ray of discontinuities with different strengths and distances, one might realize control-
lable fractional vortex crystals without reflection symmetry and study its nonequilib-
rium transport. In this case, the eigenvalue problem (5.2.6) corresponds to the motion
of a continuous plane wave in a ratchet potential.

Appendix: Hypergeometric functions and Lam é equation

The complete elliptic integrals of the first and second kind used in this report are
defined respectively as

K(k2) =

π/2∫

0

dα√
1− k2 sin2α

, E(k2) =

π/2∫

0

dα
√

1− k2 sin2α . (A-1)

The parameterk, k2 < 1, is called elliptic modulus. These elliptic integrals arenothing
else but specific hypergeometric functions.

The complementary elliptic integral of the first kind is defined as

K′(k2) = K(k′2) , (A-2)

with the complementary modulusk′ =
√

1− k2.

The function am(u, k2) which is called Jacobi’s elliptic amplitude is defined through
the first order differential equation

(
d am(u)

du

)2

= 1− k2 sin2 [am(u)] . (A-3)

It has the following quasi-periodic property inu:

am
(
u+ 2nK + 2iK′

)
= nπ + am(u) .

The Jacobi’s elliptic function sn(u, k2) is defined through the equation

(
d snu
du

)2

=
(
1− sn2u

) (
1− k2sn2u

)
, (A-4)

and is related to the amplitude by snu = sin(amu). Its periodic property is given by

sn
(
u+ 4nK + 2iK′

)
= sn(u) .

The second order differential equation, which is known as theNth Lamé equation, is
given by {

d2

du2
− E − N(N + 1)P(u)

}
f (u) = 0 , (A-5)
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with E is a real quantity,N is a positive integer andP(u) denotes the Weierstrass
function. The functionP(u) is a periodic solution of the first order equation (see [24])

(
dP
du

)2

= 4(P − e1) (P − e2) (P − e3) , (A-6)

with e1, e2, e3 are the characteristic roots that uniquely determineω andω′:

P (
u+ 2nω + 2mω′

)
= P(u) .

The stability equation (5.3.4) can be identified with eq. (A-5) with N = 1, u = x̄+ iK′,
and E = 2−k2

3 − k2ω2 in virtue of the relation betweenP(u) and the Jacobi elliptic
function sn(u, k) (see formulas 8.151 and 8.169 of [24]):

k2sn2(x̄, k) = P(x̄+ iK′) +
k2 + 1

3
. (A-7)

Relation (A-7) holds if the characteristic roots ofP(u) are expressed in terms ofk2 as

e1 =
2− k2

3
, e2 =

2k2 − 1
3

, e3 = −
1+ k2

3
, (A-8)

and the real and imaginary half periods ofP(u) are then given by the elliptic integrals
of the first kind

ω = K(k) , ω′ = iK′(k) . (A-9)

The stability equation (5.3.15) can be identified similarlyas above only now with
u = x+ iK′ andE = 2−k2

3 − ω2.

WhenN = 1, the two linearly independent solutions of (A-5) are givenby (see, e.g.,
[24, 25, 26, 27])

f±η(u) =
σ(u± η)
σ(u)

e∓uζ(η) , (A-10)

whereη is an auxiliary parameter defined throughP(η) = E, andσ(u) andζ(u) are
other Weierstrass functions which are defined as

d ζ(u)
du

= −P(u) ,
d logσ(u)

du
= ζ(u) , (A-11)

with the properties

ζ(u+ 2K) = ζ(u) + 2ζ(K) ,

σ(u+ 2K) = − e2(u+K)ζ(K)σ(u) . (A-12)

As a consequence of Eq. (A-12), we can obtain the Floquet exponent of f±η(u) which
is defined as

f (u+ 2K) = f (u)eiF(η) , (A-13)

with
F(±η) = ±2i

[
K ζ(η) − η ζ(K)

]
. (A-14)
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Summary

In this thesis, the stability of fractional Josephson vortices in Josephson junctions
with phase shifts is investigated analytically and numerically. A Josephson junction
which is made of two superconductors separated by a thin insulator can have phase
shifts in its phase difference due to, e.g., the unconventional symmetry of the super-
conductors or a pair of current-injectors. In such a system,a magnetic field can be
spontaneously generated at the discontinuity points that characterize the position of
the phase shifts.

The phase difference of a Josephson junction is described by a sine-Gordonequation.
Phase shifts make the equation nonautonomous. Because the nonautonomicity takes
a special form, the existence of spontaneously generated fractional fluxons can be
analyzed and studied simply using phase plane analysis.

Using this very basic procedure, some important questions,such as the presence of
critical bias current above which a voltage is created across the junction, and the
presence of a minimum distance between two consecutive phase shifts needed for
fractional fluxons, already can be answered. It is also shownthat there exists some
solutions representing fractional fluxons which are provento be unstable.

An array of short Josephson junctions with a phase shift ofπ is also discussed. In
this array, a latticeπ-kink can be generated spontaneously. The unstable solutions
representing fractional fluxons found in the long junction might have a stable corre-
sponding solution in the short junction arrays. It is because a long Josephson junction
can be seen as a continuous limit of short junction arrays. Yet, it is shown that they
are still unstable even in the weak coupling limit.

In this thesis, the so-called tricrystal junctions that have promising applications, e.g.,
as logic device based on the Josephson effect for high-performance computers are also
studied. An infinite long 0-π Josephson junction can be considered as a combination
of two semi-infinite 0- andπ-junctions. A tricrystal junction is then a combination of
three semi-infinite long Josephson junctions having one common point. In a tricrystal
junction system, a fluxon coming toward the common point can be trapped. Com-
binations of the Josephson characteristic lengths of the individual junctions that sup-
port trapped fluxons are analyzed. If one of the junctions is aπ-junction, it is shown
that a semifluxon is stable for any combination of the Josephson characteristics and
it is analyzed whether the system supports a multiple-semifluxons state. The mini-
mum number of Josephson junctions forming a multicrystal junction that supports a
multiple-semifluxons state is also discussed.

The last part of the thesis deals with a Josephson junction system with phase shifts of
κ, with κ is not necessarilyπ. This system is not as trivial as it might look especially
because a fractional kink can have different topological charge from the corresponding
fractional antikink. A Josephson junction with one single phase shift and with period-
ical phase shifts is studied. The stability of fractional kinks supported by the system



is analyzed in both cases. We claim that the knowledge of the band-gap structures for
periodic phase shifts is of importance also from an application point of view.
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Samenvatting

In dit proefschrift zal de stabiliteit van fractionele Josephson vortices in Joseph-
son juncties met fase verschuivingen zowel analytisch als numeriek onderzocht wor-
den. Een Josephson junctie gemaakt uit twee supergeleidersen gescheiden door een
dunne isolator laag kan verschuivingen in zijn fase-verschil hebben vanwege, bijvoor-
beeld, de onconventionele symmetrie van de supergeleidersof door een paar stroom-
injectors. In zo’n systeem kan een magnetisch veld spontaangegenereerd worden bij
de discontinuiteits punten die de positie van de fase verschuivingen karakteriseren.

Het fase verschil van een Josephson junctie word beschrevendoor een sine-Gordon
vergelijking. Fase verschuivingen leiden ertoe dat de vergelijking niet-autonoom is.
Vanwege de speciale vorm van de niet-autonomiciteit, kan deexistentie van spontaan
gegenereerde fractionele fluxons derondanks geanalyseerden bestudeerd worden door
gebruik te maken van fase vlak analyse.

Gebruikmakend van deze basis procedure, kunnen sommige belangrijke vragen, zoals
de aanwezigheid van een kritische bias-stroom boven welke een voltage gecreeerd
wordt over de junctie, en het bestaan van een minimale afstand tussen twee opeenvol-
gende fase verschuivingen nodig voor het genereren van fractionele fluxons, beant-
woord worden. Ook zullen we bewijzen dat er instabiele oplosingen bestaan die frac-
tionele fluxons representeren.

Een array van korte Josephson juncties met een fase verschuiving vanπ zal bekeken
worden. In dit array kan een latticeπ-kink spontaan gegenereerd worden. De in-
stabiele oplossingen, die fractional fluxons representeren, die voorkomen in de lange
junctie hebben misschien stabiele corresponderende oplossingen in de korte junctie
arrays. Dit komt doordat een lange Josephson junctie gezienkan worden als een con-
tinue limiet van korte junctie arrays. Wij laten echter ziendat deze oplossingen nog
steeds instabiel zijn, zelfs in de zwakke gekoppeld limiet.

In dit proefschrift worden ook zogenaamde tricrystal juncties onderzocht. Deze junc-
ties hebben veelbelovende applicaties, bijvoorbeeld als logic device gebaseerd op het
Josephson effect voor high-performance computers. Een oneindig lange 0-π Joseph-
son junctie kan beschouwd worden als een combintie van twee semi-oneindige 0- en
π-juncties. Een tricrystal junctie is dan een combinatie vandrie semi-oneindige lange
Josephson juncties die één gemeenschappelijk punt hebben. In een tricrystal junctie
systeem zal een fluxon gevangen worden als deze in de buurt vanhet gemeenschap-
pelijk punt komt. Combinaties van Josephson karakteristieke lengtes of van individu-
ele juncties die gevangen fluxons ondersteunen worden geanalyseerd. Als één van
de juncties eenπ-junctie is, dan zullen we laten zien dat een semifluxon stabiel is
voor iedere combinatie van Josephson karakteristieken en wordt onderzocht of het
systeem een meervoudig-semifluxon toestand ondersteunt. Ook wordt het minimale
aantal Josephson juncties die een multicrystal junctie vormen die een meervoudig-
semifluxon toestand ondersteunt behandeld.



Het laatste gedeelte van het proefschrift behandelt een Josephson junctie systeem met
fase verschuivingen vanκ waarbijκ niet persé gelijk is aanπ. Dit systeem is niet zo
triviaal als het lijkt, omdat een fractionele kink een andere topologische lading kan
hebben dan de corresponderende fractionele antikink. Een Josephson junctie met één
enkele fase verschuiving en met periodieke fase verschuivingen wordt bestudeerd. De
stabiliteit van fractionele kinks ondersteund door het systeem wordt geanalyseerd in
beide gevallen. Wij beweren dat kennis van de band-gap structuur voor periodieke
fase verschuivingen belangrijk is, ook gezien vanuit de toepassing.
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