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Chapter 1

Josephson junctions with phase shift

Heike Kamerlingh-Onnes in 1911 discovered an unmeasusghbll value of
electrical resistance of mercury when it was cooled bel@®w4[1]. He called this
phenomenon of no-resistance to an electrical cursaperconductivity In the sub-
sequent years many more materials were found to be superciimgl when cooled
down low a certain critical temperatufg. For his discovery, Kamerlingh-Onnes was
awarded the 1913 Nobel Prize in Physics.

A microscopic explanation of superconductivity was notrfddior nearly half a cen-
tury. An important contribution to the understanding okthew state of matter was
made by Herbert Frohlich in 1950 [2] and Leon N. Cooper in6L.Eg. Frohlich real-
ized that under the right conditions, electrons could eigpee an attractive interaction
mediated byphonons Phonons are quanta of crystal lattice vibrational energiciv
are analogous to the quanta of lightghrotons The phonons excert forces that can
overcome the electrons’ Coulomb repulsion. Afterwardspfienm showed that given
those right conditions, the ground state of a material isalple with respect to pairs
of electrons. Therefore, electrons form so-callmbper pairsghat are coupled over a
range of hundreds of nanometers, i.e. three orders of matmiarger than the lattice
spacing. The total momentum of this Cooper pair is constantt the spins of the two
electrons forming the Cooper pair are opposite to each .other

A theory of superconductivity was built by John Bardeen,i.lo Cooper, and Robert
J. Schridter [4] in 1957 which is named after them, i.e. BCS theory. TI&SBheory
shows that it is possible for a number of Cooper pairs to forno@ogeneous con-
densate at the same energy level. Below the critical tenyexsahis condensation is
able to move through the lattice relatively digrted by thermal vibrations and hence
experiences no resistance. Bardeen, Cooper, and 8ehneere then awarded the
1972 Nobel Prize in Physics.

Another discovery was made in 1962 by Brian D. Josephson whdigied that
Cooper pairs can tunnel through a nonsuperconductingdodrom one supercon-
ductor to another without any voltage across the barrieHlg] also derived the exact
form of the current and voltage relations for the junctiorp&riments confirmed his
analytical calculations, and Josephson was awarded th& N8Bel Prize in Physics
for his work. Since then, thénsephsonfgectsthat describes the flow of a supercurrent
through a tunnel barrier, have been a subject of considerabearch studies.

In aJosephson junctign.e. a system of superconductors separated by barridgrés),
nonsuperconducting barrier separating the two superaioiumust be very thin. If
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1 Josephson junctions and sine-Gordon equations: an Introduction

the barrier is an insulator, it has to be on the order of 30 Aktlor less. If the barrier
is another metal (nonsuperconducting), it can be as muckwesa microns thick.
Until a critical current is reached, a supercurrent can flovoss the barrier without
a voltage diference. This is known as tH2C Josephsonfgect When a constant
voltage is applied across the junction, the supercurrdhbgtillate in time which is
known as theAC Josephsonfgect The oscillation frequency of this AC voltage is
nearly 500 GHz per mV across the junction.

Detecting and measuring the change from one state to theisthethe heart of the
many applications for Josephson junctions.

The macroscopic explanation of this process starts wittweneefunctioh that char-
acterizes all Cooper pair that can be expressed as

¥ = nY?exp(b), (1.1.1)

wherens is twice the density of Cooper pairs aféids the internal phase of the elec-
trons. If ¥; and¥, are the wavefunctions of the first and second supercondyjctor
linearly coupled Schrodinger equations give the two basigations which describe
the Josephsortiects

Is = Imsing, % = cp%\/. (1.1.2)
Hereln, V, andg are the maximum direct supercurrent through the junctimmetec-
trical voltage across the junction, and the phasiedince of the wavefunctions, re-
spectively, anabo, which equals D68x 101°Whb, is the magnetic flux quantum. The
first and second equation of (1.1.2) are referred to as thremafentioned DC and AC
Josephsonftect, respectively.

Apart from this discussion on Josephson junctions, an itapbhbreak-through in
the study of superconductivity has been made by Johanneg@ddz and Karl A.
Muller who received the Nobel Prize in Physics in 1987. @Gécamaterials which are
expected to be insulators, were discovered in 1986 by Bedwat Mieller to be su-
perconductors only at a transition temperature of 35 K [6]e Thaterial they studied
was lanthanum-barium-copper-oxidelL@8Ba,CuC, ceramics. Before the mid 1980s,
superconductivity had only been observed in metals andllicethoys that had been
cooled below 23 K. Soon after the discovery of Bednorz andlévithe supercon-
ductive transition temperature was improved rapidly ashmas in Fig. 1.1. This
—together with other anomalous properties of ceramic supehectors has lead to
the diferentiation of superconductors in two classes: low- anti-eigtical tempera-
ture (T¢) superconductors.

In low-temperature superconductors the electrons paéthey so that their total or-
bital angular momentum is zerea so-calleds-wave stateln high-temperature super-
conductors, on the other hand, the pairs are in a so-cdlledve statea superposition

of states in which the angular momentum is non-zero. d@ihigve symmetry has been

1 Rather than saying that a particle has a specified position and momentum, one instead de-
scribes it by a wavefunction which is a function of all coordinates and of time. The quantity [¥2 has
an important physical interpretation: it is related to the probability that electrons can be found in a
particular region of space at a particular time instant.

6



1.1. JOSEPHSON JUNCTIONS WITH PHASE SHIFT
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Figure 1.1: Development of the superconducting transition tempeeagifiter the discovery of
the phenomenon in 1911. This figure is taken from [7].

verified only recently by elegant experiments. Theordfic#these superconductors
have been recognized to have an unconventional symmetng ofder parametet.

With this unconventional symmetry of the order parameler superconducting phase
0 of the wave function (1.1.1) is anisotropic and exhilkitdifference at the perpen-
dicular direction inthe momentum space

To know about momentum space, we need to notice that eledmancrystal display
wavelike properties, and can be described using a wavenethat has components
ky, ky, andk,. We can consider the overall distribution of electrons hyresenting
each electron ikk- or momentum-space.

The crystal structure of the family of the high-superconductors has unit cells with
the same size along the andy-crystal direction but a dlierent size along theaxis.
Along this z-crystal direction, the unit cell has a larger dimensione Shperconduc-
tivity is then supposed to be localized in tke- y plane, leading to the terfayered
superconductar

One commonly and widely used material of a layered strudtisgtrium-barium-

2 An order parameter is defined to quantify how much 'order’ is present in a material (see [10]).
In superconductivity, this order parameter is proportional to the wavefunction.



1 Josephson junctions and sine-Gordon equations: an Introduction

copper-oxide YBaCu;O; that is superconductive below 98 K. This material was
found by the research group of Maw-Kuen Wu and of Paul C. W. [BhuIn Fig.
1.2, we present a sketch of the atomic structure of this nahighere the unit cell is
larger in the vertical direction than in the horizontal anes

Figure 1.2: lllustration of the crystal structure of yttrium-bariurosgper-oxide ceramics mate-
rials. One can notice that the unit cell in the vertical and4wmtal direction are not equal. This
is why the supercurrent flow in the vertical direction feesistance and the materials can then
be considered to be superconducting layers separated ihgrbar

Using the above description of the momentum space and teeddgtructure of high-
T superconductor, thewave andd-wave state ifk-space is illustrated in the pictures
in Fig. 1.3 (see [9]).

If one replaces one of thes-(vave) superconductors in Josephson junctions with a
wave superconductor, then there can occur an intringibase shift in the Josephson
junction, as is depicted in Fig. 1.3(b). If the negative latf¢he order parameter of
thed-wave superconductor in one side of the junction overlapis thie positive lobe

of the order parameter of thewave superconductor in another side of the junction,
then ar-junctionis formed.

The connection of the two superconductors by such an armaagiedoes not, by itself,

lead to any special phasefidirence, because the phases of the order parameters on
both sides simply arrange themselves to minimize the Jesepdmergy;- cos ¢ + x),

by setting the phase fierencep equal torr. It merely relates to a phase change in one
of the two superconductors, edy. —» ¢1+7. Hence, whether a junction isrjunction

or not is only a matter of convention. Therefore, to getjanction, the junction has

to be made in certain way such that there is no way to mininnieeshergy in all parts

of the junction. This condition can be achieved by severaglsv@ne is by making

8



1.1. JOSEPHSON JUNCTIONS WITH PHASE SHIFT

TS

(b)

Figure 1.3: (@) lllustration of thes-wave andi-wave order parameter in the momentum space.
(b) Josephson junction betwesmwave andi-wave. This corresponds tomajunction because
of the phase-shift of the phasetérence byr. The negative lobe of the-wave superconductor
meets the positive one of tlsewave.

multiply connected superconducting systems (see [11])Fi¢n 1.4, we sketch this
configuration of three superconducting segments formimmgp With three junctions.

The arrangement is chosen so that all junctionsrguenctions by our definition. We
can now think of the above process (— ¢1 + ) to one of the segments to convert
its adjacent junctions into O-junctions and leaving an@nction only. There is no
further transformation to remove the remainingunction without changing one of
the two 0-junctions again into &junction. Hence there is no way to minimize the
energy of all junctions. This meaffrsistationfor the loop.

Another way of making a-junction is by constructing a junction such that the wave
function of the conventional superconductor overlaps #ameously with a part of
the unconventional superconductor wave function with fp@ssign as well with a
part with negative sign. The best-known junction for thisfiguration is the corner
junction [9, 12, 13] (see Fig. 1.4(b)). In Fig. 1.5(a), weg@et an optical microscope
picture of a zigzag junction which consists of several cojmections.

Recently, several procedures for making-gunction have been proposed and con-
firmed experimentally. One can fabricate junctions whiahfarmed at the boundary
between two crystalline films of cuprate superconductoth wifferent orientations
[14] or Josephson junctions with a ferromagnetic barrié, [l6]. The most recent

9
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Figure 1.4: (a) Superconducting loop with three junctions and (b) a eofanction between
s-wave andi-wave superconductor.

technology is by using a pair of current injectors which deeed close to each other
[17] as shown in Fig. 1.5(b). With this latest procedure, cae introduce an arbitrary
phase shift to Josephson junctions. For a successful aperabthAx andAw (see
Fig. 1.5(b)) must be much smaller than the Josephson péinetteptha ;.

10



1.2

1.2 Sine-Gordon equations

(b)

Figure 1.5: (@) An optical microscope image of a zigzag junction whichsists of several
corner junctions. The junction is made by a highsuperconductor YBZw0;_; and low-
T superconductor Nb, separated by Au. Courtesy of Ariandg.A(boptical image of an
ordinary long Nb-AlQ-Nb junction with two injectors. This junction can producéactional
flux quantum. The figure is taken with permission from [17].

Sine-Gordon equations

The phase dierence between two superconductors forming a Josephsctiojon
satisfies the following sine-Gordon equation (see, e.d){18

dxx — Pt = Sin(p + 6) (1.2.1)
for an ideal long Josephson junction or

¢n+1 _ 2¢n + ¢n—1

2z — g =sin@" +6") 1.2.2)

for an array of short Josephson junctions wheiie the coupling constant between
two consecutive lattices amdnumbers the sites. The parametex) or 8" represents
the phase shift, which is constant for the continuous anddtberete sine-Gordon
equation.

11



1 Josephson junctions and sine-Gordon equations: an Introduction

The sine-Gordon equation, Eq. (1.2.1) wétk= 0, was originally considered by En-
neper [19] in the dferential geometry of surfaces of a constant negative Gaussi
curvature.

To name a few applications as physical models, besides theraéntioned descrip-
tion of superconductivity and long Josephson junctiorssthe-Gordon equation also
appears in the study of simplified dislocation models whémnkdkand breathers were
first noticed by Seeger and co-workers [20]. IndependeRdyting and Skyrme [21]
used this equation as a simple one-dimensional model ofctilarsfield theory mod-
eling a classical particle. One of the simplest macroscomidels describing the dy-
namics of the discrete sine-Gordon equation, i.e. Eq.Z1With 6" = 0, is a system
consisting of a chain of pendula with each pendulum beingneoted to its neigh-
bors by elastic springs [22, 23]. For a rather complete vewiee reader is referred to
[24, 25].

One of the elementary solutions of the completely integraihe-Gordon equation
which plays a major role in the study of Josephson junctistisetopological soliton
solution

B(x, 1) = 4tarmtexplo(x— vt)/ V1 -], o = +1. (1.2.3)

Here, we define gopological chargeas a conserved quantity that is equal to the dif-
ference between the phasexat +co0 andx = —co. The topological charge of solution
(1.2.3) is then Z0. The solution (1.2.3) is calledkink andantikinkin cases = +1
ando = -1, respectively. In Josephson junction systems, this){nki represents a
vortex of supercurrent that creates a magnetic field withflthethat is equal to the
magnetic quantum®y = 2.068x 107 Wh. Therefore a sine-Gordon (anti)kink is
also called arfanti)fluxon Several expectations on Josephson junctions to be indus-
trially applicable and usable in the future are due to thigadc solution.

The interesting aspect of a Josephson junction with phafte gh+ 0 in Eqgs. (1.2.1)
and (1.2.2)] is the spontaneous appearance of fractionabfianta. This strength-
ens the possibility for quantum information processingligptions using fractional
vortices. This type of ground state by all means h&&Bnt characteristics from the
elementary solutions of Eq. (1.2.1) with= 0 (mod 2r). Nonetheless, only a few
theoretical studies have been devoted to an investigatismal a ground state as will
be listed below.

Bulaevskii, Kuzii, and Sobyanin [26] were the first who arzalgt the Josephson sys-
tem with magnetic impurities and predicted the possibflitya 7-phase shift as well
as the presence of spontaneous magnetic flux. After that,wgrko the end of the
year 2000, there are only few works considering specificafigtional flux quanta
from a theoretical and mathematical point of view. To ourtlk@®wledge, those ar-
ticles are [27, 28, 29, 30, 31, 32, 33] for discussions on [@nglosephson junctions
and [34] for tricrystal grain boundaries. For list of reoon experimental results, the
reader is referred to [14] and references therein. Equai{dr2.1) and (1.2.2) then
opens a new field with open problems.

12
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1.3 Outline of the thesis

Outline of the thesis

Motivated by the above description, this thesis is made amé&ibution toward
the understanding of characteristics of fractional fluxdtis presented as a collection
of scientific articles in such a way that the chapters can ae separately.

In Chapter 2, we show and discuss the existence of fractibnains in a Josephson
system with phase shifts. We exploit phase plane analystdw existence of the
semifluxon states. This method is applicable to the pregediy ecause (stable)
fractional fluxons in the steady state are independent dd.tibhsing this very basic
procedure, we already can answer some important questilthhessed by previous
authors, such as the presence of a critical bias currenialvbich there is no static
semifluxons [29] and the presence of a minimum distance legtwgo consecutive
phase shifts needed to have fractional fluxons [31]. Usiegtiase portrait analysis,
it is also shown that there exists some unusual solutionresepting dferent type of
fractional fluxons. These types of fractional vortices aeljrted to be unstable.

In Chapter 3, we study a f-array of short Josephson junctions. We study the case of
Josephson systems with one phase shift. A possible implatiemof the problem

in experiments using the present technology is also meadiorThe main issue of
this chapter is the existence and stability of lattickinks. Stability of the solutions
obtained in the previous chapter, which are the strong @ogipmit of lattice 7-kinks,

is also discussed.

In Chapter 4, we consider the so-called tricrystal junciorAn infinite long Os
Josephson junction can be considered as a combination ofémd-infinite 0- and
7- junctions. A tricrystal junction is then a combination bfée semi-infinite long
Josephson junctions having one common point. This typermitjons has promising
applications, e.g., as logic device based on the Joseplfigmt ®r high-performance
computers. In a tricrystal junction system, a fluxon comimgard the common point
can be trapped. We also discuss whether the common pointagambre than one
fluxon. If one of the junctions is&junction, it is shown that a semifluxon is stable for
any combination of the Josephson characteristics and itayaed whether the sys-
tem supports a multi-semifluxon state. The minimum numbd&oséphson junctions
forming a star-like multicrystal junction that supports altiple-semifluxons state is
also discussed.

In Chapter 5, we consider a Josephson junction system wakephhifts ok, with

k is not necessarilyr as is the case in the foregoing chapters. This system is not
as trivial as it might look, especially because a fractidiiak can have a dierent
topological charge from the corresponding fractional kank. In this chapter we
consider a long Josephson junction with one single phafieasiti one with periodical
phase shifts. For one phase shift, the stability of fraetidinks supported by the
system is analyzed. For a periodic structure, the band gagirsiin of fractional kinks

is studied.

13
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Chapter 2

We investigate analytically a long Josephson junction wstgveral -
discontinuity points characterized by a jumpsmofn the phase gference of
the junction. The system is described by a perturbed-cardisme-Gordon
equation. Via phase-portrait analysis, it is shown how thistence of static
semifluxons localized around the discontinuity points feiénced by the ap-
plied bias current. In junctions with more than one cornkere is a minimum
facet-length for semifluxons to be spontaneously generatsthbility analysis
is used to obtain the minimum facet-length for multi-corjueictions.

Introduction

Superconductors are characterized by the phase coheirfdhee@noper pair con-
densate. Recent technological advances in the controleopliase near a Joseph-
son junction have promoted research on the manipulatiorphade biasing of such
junctions. Examples are the experimental realization pEBtonductor-Ferromagnet-
Superconductor (SF@}junctions [1], and Superconductor-Normal metal-Supedcmtor
(SNS) junctions in which the charge-carrier populationhia tonduction channels is
controlled [2]. These junctions are characterized by aimisic phase-shift of in the
current-phase relation or, in other words, #ieetive negative critical current.

An alternative branch of phase biasing i$eved by the intrinsic anisotropy of un-
conventional superconductivity. A predominaly_,. pairing symmetry in highF.
superconductors [3] enables the possibility to bias pdrtiseocircuit with a phase of
. Examples are the-SQUID [4, 5], tricrystal rings [3], the corner junction [&nd
the zigzag junction [7]. The latter two inspired the anayivestigation in the present
work. These structures, of which neighboring facets in &gbson junction can be
considered to have opposite sign of the critical currergsent intriguing phenom-
ena such as the intrinsic frustration of the Josephson phasghe junction and the
spontaneous generation of fractional magnetic flux neacdneers. The fractional
fluxes are attached to the discontinuity points and are fdrimantiferromagnetic or-
dering. This ordering has indeed been found experimensallthe ground state of
YBa,CuzO7-Nb zigzag junctions [8, 9] as shown in Fig. 2.1.

The presence of a fractional flux, or semifluxon, has beenideresi before by sev-
eral authors [8, 10, 11, 12, 13, 14, 15]. In this work we prés@ranalytic investiga-
tion of the existence and behavior of these semifluxons imfmnitely long Joseph-
son junction withr-discontinuities. We will introduce the model for thesegtians
and the method we use to analyze the semifluxons in a Joseplrstion with 7-
discontinuities in Section 2.2. In Section 2.3 the resutsdner-discontinuity, the
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2 Static semifluxons of a Josephson junction with z-discontinuity points

Figure 2.1: A scanning SQUID microscope image of fractional magnetig fua system of
YBa,CusO;-Au-Nb zigzag junctions. The picture is taken from [9] witbrmission of the
authors.

corner junction, is presented. Section 2.4 discusses geefoatwor-discontinuities,
in which we compute the minimum facet length between theadisouity points nec-
essary to be able to spontaneously generate flux. In Sectiritds shown how
the model is extrapolated to an increasing number of digwoities in the infinitely
long Josephson junction. We use a stability analysis toudsthe existence of the
semifluxons for this case. We conclude the work in Section 2.6

Mathematical model and phase-plane analysis

To describe the dynamics of a long Josephson junctionmvittscontinuity points
a perturbed sine-Gordon equation is used [10]:

Pxx — ¢ = SiN[gp + 6(X)] -y + ad, (2.2.1)

whereq is a dimensionless positive damping fit@ent related to quasi-particle tun-
neling across the junction andis the applied bias current density, normalized to the
junction critical current density.. The functiorg(x) takes the value 0 or, represent-
ing the alternating sign of the critical current associatét the presence, or absence,
of the additionak-phase shift.

Equation (2.2.1) is written after rescaling where the spa@riablex and time vari-
ablet are normalized by the Josephson penetration leagtind the inverse plasma
frequencyu,;1 respectively.

We consider static semifluxons, hence (2.2.1) reduces to
oU

5’ (2.2.2)

¢xx= -
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2.3 Junctions with a single -discontinuity point

whereU = —(1 - cosp + 8(X)]) + y¢. For physically meaningful solutiong,andgy
are required to be continuous at the discontinuity point.

The first integral of Eq. (2.2.2) is
203 = —coslp + x)] ~ v+ C, (2.23)

whereC is the constant of integration. #fwould not depend om, then the integral
curves (‘orbits’) of (2.2.3) form thphase portraiin the @, ¢x) phase plane.

Phase-plane analysis is particularly useful for the qaid@i analysis of planar fier-
ential equations, see for instance [16, 17] for an exampielwing a perturbed sine-
Gordon equation. For a general introduction to phase-pdaadysis see for instance
[18].

In the present situation howevérdoes depend oR, but in a special manneg¢:takes
only two values. Therefore there are two phase portraitsitrae into play, one with

6 = 0 and another one with = x. Solutions of (2.2.2) are suitable combinations
of orbits on these two phase planes. The position where tiielsis made between
the two phase planes is determined by the valueg whered jumps. With this
convention in mind we will for simplicity speak abotlite phase portrait of (2.2.2). A
similar approach is used by Walker [15] to analyze a paricsblution of Eq. (2.2.2)
representing semifluxons in the caseyot 0. In his paper, Walker analyzes this
situation using a combination of the potential functidhs.e.U = —(1 — cosg) and

U = (1-cosy).

Junctions with a single  r-discontinuity point

In a junction with a singler-discontinuity point, under certain conditions, a semi-
fluxon is expected to be generated [3]. Wi(lx) given by

0, x<0O,
o(x) = (2.3.1)
m, X> 0,

the parameterization of this semifluxon foe 0 is [10, 12]:

4 arctanexpX — Xg), X< 0,
¢(X)={ P~ Xa), X < (2.3.2)

4 arctanexpX + Xp) — 7, X > 0,

wherexo = In (V2 + 1). In the phase plane, the solution (2.3.2) is given by tma-co
bination of the curves with arrows in Fig. 2.2. Por< 0 we follow the solid curve
starting at the origin up td;, wherex = 0. Fromd; we switch flows and follow
the dashed curve for > 0 up to @¢/x, ¢x) = (1,0). This defines a semifluxon with
a r-phase jump:p() — ¢(—0) = &. The intersection of the trajectories far< 0
and forx > 0 makes an angle, i.s. transversalwhich guarantees the persistence of
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2 Static semifluxons of a Josephson junction with z-discontinuity points

Figure 2.2: The phase portrait of the system (2.2.2) foe 0. The trajectories fox < 0 are
indicated with bold lines, the trajectories for- 0 with dashed lines. Any orbit of Eq. (2.2.2)
switches ax = 0 from bold to dashed. The semifluxon parameterized by (2iB.8)e phase
plane is indicated with arrows with is the corresponding position &f= 0. O is the position
of (0,0). The definition ofl;, n; — n4 are in the text.

the semifluxon when a bias current is applied. Later on itlélishown that this will
remain the case up to= 2/x.

In the phase plane, equilibria are the points that corredpothe maxima and min-
ima of the potential, i.e. @U/d¢ = 0, ¢x = 0). Wheny = 0 two adjacent equilibria
are connected by heteroclinic connections. Once we $eD, the heteroclinic con-
nections break and form homoclinic connections, i.e. cotioes between an equilib-
rium with itself. This opens the possibility for other satuts satisfying Eq. (2.2.2)
and boundary conditiop(co) — ¢(—0) = & than the semifluxon solution described
above. As shown in Fig. 2.3, a semifluxon can be constructechbgsingd, or ds

as the point whera = 0. With these two discontinuity points, we obtain solutions
with an overall phase jump of, but containing humps as shown in Fig. 2.4. For
v = 0 these constructions are not possible since the trajestaduld pass through an
equilibrium.

The semifluxons with humps can be viewed as combinationsrofifisxons and 2-
fluxons. The semifluxon witl, as the position ok = 0 consists of a semifluxon and
a fluxon-antifluxon pair, while the semifluxon with for the corresponding position
of x = 0 consists of a semifluxon and a fluxon with opposite polaBgcause a fluxon
and a semifluxon with opposite (like) polarity are attragtfrepelling) each other, we
can expect these semifluxons to be unstable. A further stitthgse semifluxons with
humps will be presented elsewhére

When increasing the normalized bias currgnthe homoclinic connections of the

1 see Chapter 3 of this thesis.
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2.3 Junctions with a single -discontinuity point

Figure 2.3: The phase portrait of the system (2.2.2) for 0.1. For simplicity we only show
the stable and unstable manifolds of the fixed points. lalstéd,, we might also take, ord;
for the position ok = 0.

two equations will shrink and move apart. Therefore, for date value ofy, which

we will denote ag*, d, andds will coincide (see Fig. 2.5). When this happens, the
solution withx = 0 atd, corresponds to a semifluxon and a fluxon-antifluxon pair at
infinity. Fory > y*, there is no solution witlx = 0 atd, that satisfies Eq. (2.2.2).
Hence, onlyd; andd; can be used for the position ®f= 0, in that case.

To deduce the exact expressionydf we consider the boundary conditions for the
phase dference and magnetic flux at infinity

liMy_0 ¢(X) = ¢ = arcsing),

lIMyse0 ¢(X) = 1 = 7 + arcsing),

Iimx—>ioo ¢X(X) = 0

From the boundary conditions, the integral cons@uof Eq. (2.2.3) is:

Cdyb, x<0
c::{cos‘l5 TP X< (2.3.3)

—COS¢p, + vy, X> 0.
Imposing thaty,(07) = ¢x(0") andg(0) = 7 + arcsiny, we obtain the value of which
gives the above condition
v = ~ 0.54. (2.3.4)

Wheny > y*, the pointd; moves towardsl;. At a certain value, the point and
ds; coincide. At that value of, the intersection of the trajectories of the system for
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2 Static semifluxons of a Josephson junction with z-discontinuity points

S 1.5F
@- 1+(arcsin y)/mt

(arcsin y)/mt

Figure 2.4: Plot of the phase as a function{in units of1;) with d, andd; as discontinuity
points. In this picturey = 0.1. The solution with higher hump is the phase withas the
discontinuity point. Dash-dot lines are the asymptote$iefsolutions.

x < 0 andx > 0 is tangential. The heteroclinic flow of the combined phasgrpit is
'smooth’ (see Fig. 2.6). We then arrive at the edge of thécstatution because as the
trajectories intersect nontransversally, perturbatinake them either nonintersecting
or transversally intersecting [19]. We will call the valueyosuch that the intersection
is nontransversal theritical currenty.. Physically, if we apply a bias current larger
than this critical current, there will be no static semiflaxanymore.

A tangential intersection is achieved when at paing ds,
legg O¢px/0p = legg 0/ 0.

Noticing thatdgy/d¢ is given by
o) _dx | _ du
dx dp(X)l0  ox
this condition is satisfied when s#0) = 0, i.e. ¢(0) € {0, n}.
To obtain the value apy at x = 0, we use that

_ £Sing -y

x=0 ¢X x=0

k)

0 0
fq&quﬁxdx:f #xSiNg — ypxdx, (2.3.5)
which gives

%tﬁx(o_)2 = —0s¢(07) + /1 — 2 — y(¢(0") — arcsiny).

Hereg(07) is a shorthand for liggo ¢(X) and likewise fok,(0~). Limits from the right
are indicated by a+'.
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2.4 Junctions with two »-discontinuity points
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Figure 2.5: Part of the phase portrait of (2.2.2) for= v*. At this value ofy d, andds coincide.

The same calculation for> 0 gives
1 +\2 _ + 2 + P
—§¢X(0 )2 = —cosp(07) — 4/1— 2 — y(—¢(0%) + 7 + arcsiny).

Becauseas(07) = ¢(0") = ¢(0) andp,(07) = ¢«(0"), the two above expressions yield
the critical current for the existence of static semifluxons

e = ; ~ 0.64. (2.3.6)

No static solutions exist foy abovey.. This result is in agreement with the result of
Kuklov, Boyko, and Malinsky [20] that foy > . the¢-fluxon changes the circulation
back and forth while releasingrZluxons. Using phase-plane analysis, we derive
the maximum supercurrent from the existence of the statigisa while Kuklov et

al. derive it from the stability of the solution.

Junctions with two  z-discontinuity points

The analytical discussion on junctions with twediscontinuity points has been
initiated by Kato and Imada [14]. The junctions have a pesitritical current fotx| >
a and a negative critical current fo < a. In this system there are two semifluxons
with opposite polarity generated at the corners of the joncivhena is relatively
large. They conjecture that the magnetic flux is sensitivéheoratioa = d/24;
whered is the distance of the two corners. We call the normalizethdie of one
corner to the next neighboring corner the normalized faamgth, which is 2 in our
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2 Static semifluxons of a Josephson junction with z-discontinuity points
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Figure 2.6: The phase portrait of the system corresponding tonthénk solution fory the
critical current.

case. Here, we consider the case when the semifluxons geshatdhe corners have
opposite polarity.

Kato and Imada show numerically that the integrated magfiett, which is propor-
tional to A¢ = |¢(0) — ¢(0)|, depends om (see Fig. 2.7). When > 1, they obtain
A¢ = . The magnetic flux decreases when the facet length reducdke absence
of a bias current, foa < &%) = 7/4, A¢ = 0. Here 2% is the minimum facet-length
necessary to have a spontaneous flux generation ywked (the superscript indicates
the number of corners). The minimum facet-lengthfat 0 will be shown to be zero
later on. In this section, we will show that the dependencagfofna can be expressed
explicitly when looking for the existence of the static sémions.

The phase portrait of the system without an applied biasotis given in Fig. 2.2.
The semifluxon-antisemifluxon and the antisemifluxon-semifh states are repre-
sented by the trajectol® — n; —ny; — O andO — nz — g — O, respectively. As &is the
length of the middle junction, it is the pathlengthraf — n, or n3 — ny4. If x would
be replaced by, as in the usual pendulum equation, it would be the time rebexigo
fromny s tonyg.

Let M, be the closed trajectory through poimtsandn,. This flow represents the pe-
riodic motion of the pendulum equatioM, crosses the-axes at the pointsHA¢, 0).
Puttingy = 0, from Eq. (2.2.3M, is implicitly given by the relation

%45)2( = COS¢ — COSAP. (2.4.1)

If ny = (¢, ), theng™ = arccos(codp + %qﬁi}(z).
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2.4 Junctions with two »-discontinuity points

0.7

2T i

(b)

Figure 2.7 A¢ is drawn as a function af. The critical current. for vortices to change their
orientation is also presented. The figure is reproduced patmission from [14].

The unstable and stable manifolds througlandn, are given by

1 2

§¢X = 1- cos¢. (2.4.2)
Hence ¢ can be written as

#" = arccog(cosA¢ + 1)/2]. (2.4.3)

Now, it is straightforward to calculate the pathlength fragto (A¢, 0) which is ex-
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2 Static semifluxons of a Josephson junction with z-discontinuity points

actlya. Using (2.4.1), we get

Ad dy
~ Jst V2(cos? — cosAg)/2 n (2.4.4)
A do 4 d¢

0 V2(cos¥ — cosA¢)Y2 ~Jo V2(cosd — cosAg)t2’

Now consider _
¢|t dﬁ
0 V2(cosy — cosAg)l/2’
Using identity cog} = 1 — 2 sirf(¢/2), the integral becomes

I_}ﬁit dﬂ

SiN(A¢/2) /1 - cSC(Ag/2) sirf(9/2)

If we let sin@@/2) = sin(A¢/2)sind such that the anglé is transformed tad =
arcsin(sing/2)/ sin(A¢/2)), the integral then becomes

d)it dq)
- — 5 Rk
fo (1 - K2 sir? 0)1/2 (i)

with k = sin% and @' = arcsin(sin%"/sinA—;’). The functionF is the incomplete
elliptic integral of the first kind [21]. Hence, we get that

a=F(r/2,k) - F(®", K). (2.4.5)

This is the explicit relation betweeftip anda wheny = 0. The plot is shown in
Fig. 2.7. With this expression, we can see that

lim a=n/4
A¢p—0
becausé — 0 and®" — z/4. This value is the minimum pathlength frams to ny 4

at the limiting pointO, which is then the minimum facet-length to have a semifluxon-
antisemifluxon or an antisemifluxon-semifluxon at the caner

An approximation to Eq. (2.4.5) for the facet lengttclose to the minimum facet
length /4 has been calculated by Kato and Imada [14] using Hamiltoaizergy
approximation.

Kato and Imada assume that whees: 7/4 + € with 0 < € < 1, the antisemifluxon-
semifluxon state is approximately given #y= Copp With

COSX (IX < a),
m+4 (2.4.6)

@o(X) =
N 4 cosae - (IX > a).
m+4
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The multiplication constant/4/(x + 4) is obtained from the normalization condition
such that the norm af is one. Note that this expression is exact whkea 0. One
can also notice that¢ = V4/(m + 4)Co.

To determineCy, they derive an fective Hamiltonian foiCy by substitutings(x) =
Coypo(X) and (2.4.6) to the Hamiltonian energy

H= f B (%¢§ + cosP(X)](1 — cose) + f¢) dx. (2.4.7)

00

By assuming tha€y is small, a simple calculation gives

2 T+2 32
H=-9¢c2,_~"° c4_ [ >22 2.4,
20" g ap 0 \Nzra?® (2.4.8)

to the fourth order o€o. Here,A3 = 4e/(n + 4).
Finally, by minimizing (2.4.8) as fo€y and takingy = 0 one obtains [14, 22]

| 64 B 12
A¢ = —ﬂ+2(a /4y .

When we start applying a bias current to the junction, a waaited an antivortex are
created at the corners even though the facet length is lasstiie minimum facet-
length fory = 0. In other words, the minimum facet-length of the junctis®iwhen
v # 0. In the phase portrait, this can be seen from the fact tleaétjuilibria of the
system forx < 0 do not coincide with the ones far> 0 wheny # 0, see Fig. 2.8. In
the presence of the applied bias current, the magnetia\ffuis also influenced by.
There are two dferent cases of the behavior of the semifluxons under the irduef
a bias current. In the following, we will discuss the two caseparately.

Antisemifluxon-semifluxon case

When we start with a pair of antisemifluxon-semifluxon whioh will here call
a ¢p-solution, there is a critical value of the applied bias eatrto reorient the solu-
tion such that it becomes a semifluxon-antisemifluxon, hallea ag;-solution. The
flipping-over from thep,-solution to thep;-solution has been discussed analytically
in [14, 22]. For simplicityf. is used to denote the critical bias current as in [14]. In
Fig. 2.7, 1. is drawn as a function dd. It is natural to expect that one would be able
to explain the flipping-over process using phase-planeyaizalA sketch of the phase
portrait of the system foy # 0 is drawn in Fig. 2.8.

Wheny # 0, the originO splits intoO_ (an equilibrium of the system fot < |a]) and
O, (an equilibrium of the system for > |a]). The minimum facet-length to have a
¢2-solution fory # 0 now is given by the pathlength a-ns. These points lie on the
unstable and stable manifolds of the systemxfor |al. The flipping process happens
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Figure 2.8: The phase portrait of Eq. (2.2.2) whenr= 0.4.

because the minimum facet-length to obtaig,esolution for a positive bias current
increases whem increases.

Therefore, given the facet length, increasjnge arrive at a level of the bias current
where thep,-solution ceases to exist, and the solution will switch tlugon of type
¢1. In Fig. 2.8, thep;-solution corresponds to the cur@e-n;-n,-O,. Hence,f.(a)
also shows the minimum facet-length to have an antisemifitsemifluxon state for
given positivey.

One might guess already that the boundary of the existenttréso$olution is when
the circle containingz; andn, makes nontangential intersection with the separatrices
(see Fig. 2.8). But, this is not the case since the arc-ledigtance frorms to n, is

not a monotonous function af¢ for a nonzerey. The arc-length fronms to n4 in the
condition illustrated by Fig. 2.8 is not the minimum. Nunoailiresult of the critical
currentf; as a function of the facet lengthis shown Fig. 2.9. Using Hamiltonian
energy approximation, Kato and Imada [14] has calculatedpgroximation to the

curve as

128 "
o= @ AT

This value off. is evaluated as the critical value where one of the minim&¢ef.8)
disappears.

Semifluxon-antisemifluxon case

When we start with a semifluxon-antisemifluxon state, witlositive current as
long as the bias current is less thafr2the static semifluxons are attached at the
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2.5 Junctions with multiple »-discontinuity points
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Figure 2.9: Plot of the critical curren. as a function of half facet length

corners for any facet length. # > 2/x there is a limiting value of, sayan(y),
such that fora > an there is no static semivortex-antisemivortex stadg.depends
monotonically ony which means that we can determine the critical cursgnfor
givena. With a certain value of andy > vy, there is no static vortex-antivortex state.
The plot of the relation betweenandy. is presented in Fig. 2.9.

When the static solutions disappears, the solution bectimesdependent and starts
flipping between the two types of semifluxons (the vortexvantex and the antivortex-
vortex) while releasing2fluxons.

The diference betweep. andf; is that the applied bias currentgf is the minimum
value of the current to pull the two semifluxons apart wiiilés the minimum current
to collide the two semifluxons. This can be seen from the Liaréarce induced by
the applied bias current. In the limdt— oo, bothy. andf. converge to 2x.

Junctions with multiple  m-discontinuity points

In [23], Goldobin et al. consider multi-corner junctionsa@of the problems they
consider is to determine the minimum length such that sexafistates do exist for
v = 0. They have shown numerically that the minimum length \&aie a function
of the number of discontinuity points. In this section, weaitiss the question of
determining the minimum facet—lengafm for semifluxons in a junction withN z-
discontinuity points analytically. Recall th i?, denotes the minimum facet-length
in absence of a bias current. All the facet lengths are asstionae equal.

One should be able to use existence analysis to determimaittfimum facet-length
for multi-corner junctions as we did for the case of two-arones, but it seems rather
difficult. Therefore we use a stability analysis of the constahtti®n ¢ = 0. This
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2 Static semifluxons of a Josephson junction with z-discontinuity points

constant solution is the trivial state. The idea is mentibimebrief by Kuklov et al.
[20] and Kato and Imada [14].

Based on numerical simulations, we assume that once thed state is unstable indi-
cated by a zero eigenvalue that moves into the right halieglé creates spontaneous
semifluxons in an antiferromagnetic order. The damping sim&d to be absent,
i.e.a =0, as it does not influence the value of the minimum facettteng

With the above assumptions the idea of getting the minimwetfeength is by looking
at an eigenvalue at zero. The starting equation is

Pxx = du = Sin[p + 6(X)]. (2.5.1)

which is Eq. (2.2.1) withy = @ = 0. Herey is taken to be zero because we calculate
the minimum facet-length in absence of a bias current.

Equation (2.5.1) admits® = kr, k € Z as the trivial solutions. We then linearize about
#° writing ¢ = ¢° + v(x, t), and retaining the terms linearn

Vyx — Vit = COSP(X)]v coskr. (2.5.2)
We now make the spectral ans&(x, t) = eltu(x) which gives foru the equation
Uyy — 42U = cosp(x)]u coskr. (2.5.3)

The real part oft determines the stability of the trivial solution.

The boundary of the essential spectrum is given by thoseneaggesa for which
there exists a solution to Eq. (2.5.3) of the foufx) = €%%, with ¢ real. It follows that

A= 2yFI-2.

Note that fromd = ++/1 — £2, there is positive spectrum wher > 1. This explains
thatkr is an unstable constant solution of the system if @asp)] = 1.

With the result above, we conclude that there is no stablstaabhsolution if cogf(co)] #
cosp(—0)]. It means there is no minimum facet-length of a long Josephunction
with an odd number of corners. For any facet length, we willagls obtain semi-
fluxons as the ground state that are attached at the corndgravotal phase jump
|¢(c0) — p(—c0)| = 7.

Josephson junctions with an even numbet-afiscontinuity points could have a sta-
ble trivial solution. According to our assumption, we neeccbmpute the discrete
spectrum. The stability of the trivial solution will depead the facet length.

If we look at Eq. (2.5.3) (without loosing generality we cakek = 0), this equation
belongs to the classical scattering problem [24]. This fmwokhas been well discussed
in quantum mechanics [25] where cés])] is the potential function. A discrete eigen-
value is a value of? for which the corresponding eigenfunction decays expaalint
asx — oo [24].

As an example, the case of four corner junctions is consitidietice that the facet
length is 2. The solution of Eq. (2.5.3) with the above requirement casilg be
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2.5 Junctions with multiple »-discontinuity points

.h.s. of (2.5.6)

0 0.2 0.4 0.6 0.8 1
a

Figure 2.10: Plot of the left hand side (l.h.s.) of Eq. (2.5.6) as a funttida. The minimum
facet-lengtte{?) is the first intersection of the curve wighaxis.

constructed by considering that we have five regions basé®di.e.

Ar2exp(V1+ 22|x), x| > 3a,
U=4 Bjzcos(V1- 23(]x| — 2a)) + C12Sin(V1— A%(]x| — 2a)), 3a> x> a,

D; cosh(V1+ 42x) + Dy sinh(V1 + 42X), |X < a.
(2.5.4)

Next, we have to determine all the ¢heients using the continuity conditiong(c™) =
u(c™) anduy(c™) = ux(c*), c = za, + 3a. In the matrix form, the eight linear homo-
geneous equations are written as

T
A(Al Bl Cl D]_ D2 Bz C2 A2) =O, (255)

with A is the codficient matrix. To calculate the minimum facet-length, weetalk 0.

The above system has nontrivial solutions only if the debeamt of the co#ficient
matrix vanishes. This leads to the equation

costt(a)(16(cod(a) — cog(a)) + 2)+
2 cosh@) sinh@) + 8(- cod'(a) + cog(a)) - 1 = 0.

(2.5.6)

As shown in Fig. 2.10 numerically, this equation has sewa@hitions. The minimum
facet-length to obtain an antiferromagnetically orderenhifluxons is the smallest
nonnegative root of Eq. (2.5.6). Then we conclude mjﬁg ~ 0.65 (normalized
to 1;). The next roots correspond to the minimum facet lengthstloérosolutions
that bifurcate from zero solution to exist. But at those minin facet lengths, the
configurations of the semi- and antisemifluxons other tharatitiferromagnetic one
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2 Static semifluxons of a Josephson junction with z-discontinuity points

are unstable. This is because the largest eigenvalue ofettwesplution is already
positive.

For a six corner junction, we find in this way thef) ~ 0.56.

These are in accordance with the results of [23] that ardrdmlausing direct numeri-
cal simulations.

So far we have calculated some minimum facet-lengﬁ# which show a depen-
dence on the number of trediscontinuity pointdN. The minimum facet-length itself
approaches zero as the following arguments show.

In this limiting case, we consider the scattering problerthva periodic potential.
Mathematically, we are looking for solution of the equation

Uxx — 42U = cosP(X)]u,
0(X) = 6(x + 4a).

(2.5.7)

Let us assume tha&(x) = x for 0 < x < 2a, andd(x) = 0 for 2a < x < 4a.

According to Bloch-Floquet theorem, the general solutibBap (2.5.7) is of the form
[25]

u = &xp(x),
@(X) = p(x + 4a),
with K satisfyingKd4a=2nr, (n=0, £1, +2,...)).

Substituting Eqg. (2.5.8)to Eq. (2.5.7), we are left with adinary diterential equation
in ¢. The solution is described by

(2.5.8)

(2.5.9)

Adk:—Kx | Berilke tK)X 0 <« x < 2a,
@Y= ) )
Cdk-—Kx 4 Dgik-+K)X 25 « x < 4a,

wherek. = VA2 + 1. The codicientsA, B, C andD are obtained from continuity
and periodicity conditions. With the same argument as Ileefigr get the condition

cosacosha = cosK4a
which givesa®™ = 0.

The calculation o ("‘i’% also tells us that arrays of@junctions forming a loop or annu-
lar junctions containing an even numbergmedliscontinuity points have zero minimum
facet-length.

Zenchuk and Goldobin [26] also consider the same problemedisas the &ect of
boundary conditions oqﬂ’}‘% if one uses finitely long zigzag Josephson junction. Using
the same method and a tricky formal expansion, one of thétsekey obtained is that
a®™ ~ 1/ VN for N even andN — co.
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2.6

2.6 Conclusions

Conclusions

We have discussed the existence of static semifluxons ukasgplane analysis
in one- and two-corner junctions. We have obtained thecatlitialue of the applied
bias curreny above which static semifluxons are not present. By phasesglaalysis
we have also shown how to construct solutions with humps. e Imot discussed
the stability of these solutioRs

For two-corner junctions, the exact relation between thgmatic flux of semiflux-
ons and the facet length has been derived. There is a minimuoeat-fength for a
semivortex-antisemivortex statejat 0.

For multi-corner junctions, the minimum facet-length of #ntiferromagnetically or-
dered semifluxon staﬂﬂ% is determined by a stability analysis of the trivial stater F
a junction with infinitely many discontinuity points, we feaghown tha ("‘i’% —-0.A
similar argumentation shows that an annular junction witita@htinuity points also
have zero minimum facet-length.

2 see Chapter 3 of this thesis.
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3.1

Chapter 3

We consider a spatially non-autonomous discrete and coatia sine-Gordon
equation describing a @Josephson junction. The continuous equation is a
special case of the discrete equation in the strong cougdlmg. The non-
autonomous character is due to the presence of a discohtipaint, namely a
jump ofr in the sine-Gordon phase. The system admits a solitary whichig
calledr-kink and is attached to the discontinuity point. There are¢ types of
nm-kinks. We show numerically and analytically that one ofdbktary waves

is stable and the others are unstable. Even though the lagjgenvalue of

a stabler-kink is on the imaginary axis, one can excite it through thigin
using a constant force. There is a critical value of the cansforce at which
zero is the largest eigenvalue. This critical value coirsidvith the critical
current for the existence of a static semifluxon. Applyingrastant force above
the critical value causes nucleation &t-kinks and -antikinks. Besidesma
kink, the system also admits a stafie-kink when there is no applied bias
current. This state is unstable. Tt8s-kink state with a--kink forms one of
the unstabler-kinks for a nonzero applied bias current. In addition it losvn
that the unstable-kinks cannot be stabilized by the discreteness, even thoug
a 3r-kink is stable when the interaction isfgaiently weak.

Introduction

One important application of the sine-Gordon equation idascribe the propa-
gation of magnetic flux (fluxons) in long Josephson junctidn®]. The flux quanta
or fluxons are described by the kinks of the sine-Gordon égua¥vhen many small
Josephson junctions are connected through the inductdntte superconductors,
they form a discrete Josephson transmission line (see Hiyy. he propagation of
a fluxon is then described by the discrete sine-Gordon emuatror some materi-
als, Josephson junctions are more easily fabricated indim of a lattice than as a
long continuous Josephson junction. In the strong coulfiilimigy a discrete Josephson
junction lattice becomes a long Josephson junction.

It was proposed in the late 1970's that a phase-shift ofay occur inside a Joseph-
son junction (in the sine-Gordon equation) due to magnetjauirities [3]. Recent
technological advances can imposg-phase-shift in a long Josephson junction us-
ing, e.g., superconductors with unconventional pairimgsyetry [4], Superconductor-
Ferromagnet-Superconductor (SE9unctions [5], and Superconductor-Normal metal-
Superconductor (SNS) junctions [6]. A junction containgggion with a phase jump

of r is then called a G- Josephson junction and is described by a §ine-Gordon
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3 Stability analysis of solitary waves in a 0-= Josephson junction

equation. The place where the 0-junction meetstitjiinction is called a discontinu-
ity point.

A 0-7 Josephson junction admits a half magnetic flux (semifluxsoetimes called
n-fluxon attached to the discontinuity point [7]. A semifluxon is megented by a-
kink of the O+ sine-Gordon equation [8]. Later on, it was proposed [9] teehalso
a latticerr-kink by making a discrete version of Josephson junctiaesa Josephson
junction array. Such lattices can be made using the tecggalescribed in [7]. The
presence of thig-kink opens a new field where many questions, that have been di
cussed in details for the sine-Gordon equation, can be sslelleagain to this kink.
The fact that the kink does not move in space, even in therwaunti case, will give a
different qualitative behavior such as the disappearance attioecigenvalue (Gold-
stone mode) as will be shown later.

In this chapter we will study the continuous and discrete Sine-Gordon equation,
especially the stability of the solitary waves admitted bg equation. Knowing the
eigenvalues of a kink is of interest for experimentalistssas the corresponding eigen-
functions (localized modes) can play an important role ntehavior of the kink [10].

The present chapter is organized as follows: in Sec. 3.2 Welescribe the mathe-
matical model of the problem and its interpretation as aplusen junction system.
We will describe the considered discrete system as welhasakecontinuum approx-
imations to the discreteness. In Sec. 3.3 we consider thincous Ox sine-Gordon
equation that describes a long Josephson junction with oneec We will derive
analytically the expression forra and 3r-kink without external current and calculate
the stability of ar-kink. It is shown that there is a critical value of the extdrforce

at which the largest eigenvalue ofrekink is zero and above which there is no static
n-kink. In Sec. 3.3 we also show that the time-independense-Gordon equation
has otherr-kink states. They are all unstable. One of thkinks can be interpreted
as the continuation of an3kink without external current. In Sec. 3.4 we study the
existence and stability of the solitary waves that werewdised in the previous sec-
tion in the presence of terms representing discretenegsefistence and stability of
the solitary waves in the weakly coupled limit will be dissed in Sec. 3.5. Numer-
ical calculations connecting the regions of weakly andrgjty discrete system will
be presented in Sec. 3.6. In this section we confirm our analyesults using the
original discrete system. Conclusions and plans for futasearch are presented in
Sec. 3.6.

Mathematical equation and its interpretation as juncti on model
Discrete 0- & sine-Gordon equation

The Lagrangian describing the phase of a @rray of Josephson junctions is
given by

IZ[ (d¢n) - (¢n+1 ¢n) — 1+COS{n +6) + ygn|dt. (3.2.1)

a
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YBa,Cu;0,

Nb
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|

Figure 3.1: A schematic drawing of a possibly fabricateer Josephson junction array using
ramp-type YBaCu;O;/Au/Nb junctions.

where ¢, is the Josephson phase of thih junction. The phase jump of in the
Josephson phase is describedpwgs follows:

0,n<0,
O = { (3.2.2)

-, 0<n.

Equation (3.2.1) is given in dimensionless form. The spatardinatex as well as
the discreteness paramegeare normalized to the Josephson lengihthe timet is
normalized to the inverse plasma frequeng} and the applied bias current density
v > 0 is scaled to the critical current density

The equation of the phase motion generated by the Lagraifgiarl) is then the
following discrete Ox sine-Gordon equation

v n-1— 2¢n+ dni1

¢n a2 = - Sln(¢n + Gn) +7y. (3.2.3)

For analytical calculations, we are interested in the cdsee?Z, but the fabrication
of the junction as well as the numerics is, of course, limiea finite number of
sites, say Rl sites. One then deals with boundary conditions. A reasenctiice
is to take a boundary condition representing in which wayaihyelied magnetic field
h = H/(1;Jc) enters the system:

P_N+1 — PN _ ON — dN-1 -h (3.2.4)
a a

In the sequel we will always consider the absence of an applagnetic field, i.e. we
will take h = 0.
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3 Stability analysis of solitary waves in a 0-= Josephson junction

Various approximation to the discreteness in the cont inuum limit

There are various approximations of Eg. (3.2.3) in the cantin limita < 1 that
can be derived. For simplicity, first consider only the digersine-Gordon equation
forn<0

v ®n-1— 2Pn + Pni1

®n a2z
Writing ¢n = ¢(nd) and expanding the fierence terms using the Taylor expansion
give

= —singn + . (3.2.5)

¢n1—2¢n+¢n+l_ N o _

Z 2k 2)| XX¢XX(na) - La¢XX
and

¢n+1 - ¢n

a

-3 kg - T
24 (k+ 1)1

Likewise, forn > 1, the continuum approximation for the equation is thenmive

du — Ladpxx = — sin(@ + 6) + v, (3.2.6)

and the continuum approximation for the Lagrangian is

ff [ ¢t)2—— La¢x) —1+cosg +0) +vye| dxdt,

wheref is defined similar to Eqg. (3.2.2), i.e.,

0, x<0,
6 =
—m, x> 0.

There are several ways to derive approximationsgfes 0) for a continuum model
(similar ideas can be found inoge~au [11]). The first obvious approximation is

2
Pt — Pxx — i_z(ﬁxxxx =- Sin(¢ + 9) + . (3.2.7)

Another approximation can be found by using thats invertible (in the right type of
function space), henegx = L3 (¢n +sin@ +6) —y) andL;t = 1- f—zzaxﬁ ..., Sowe
get

2
Oxx = ¢t + SN +0) —y — i—zaxx(qbn +sin(g + 0)), x=#0. (3.2.8)

Expanding this equation and using the expressiogfpagain, we get

xx = ¢ +Sin@+6) —y
- 1—2(¢tttt + [sin(g + 6)]w — ¢Z Sin(@ + 6) (3.2.9)
+ oS + O)[py + Sin@ +6) —vy]), x=0.
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3.2 Mathematical equation and its interpretation as junction model

The steady state equation for Eq. (3.2.7) is

a .
Oxx + 1_2¢xxxx =sin@+6) -y, x=#0,

while Eq. (3.2.8) yields the equation

a2

128xx) sing+6)—y, x#0,

dxx= (1~
and Eq. (3.2.9) gives

. a2 . :
=SNG +6) —y - T {~g2sin( + ) + cos + O)[sin(@ +6) -1}, x#0.
Unfortunately the last two equations are not Hamiltonianyg have lost the Hamil-
tonian properties, while the first equation is singularlytpeed.

Yet another approximation that has variational structackig not singularly perturbed
can be obtained by combining the two equations that haveHesgtvariational char-
acter. Indeed, taking (3.2.8) twice and substracting 93 gives

xx = ¢ +Sin(g +6) —y

-5 (2¢xxtt + 2¢xx COS(p + 6) — ¢% SiN(d + 6) — duire — Pt COSP + 6)

+¢?sin(p + 6) — cosgp + O)(¢ + Sin@ +6) —y)).  x#0.
(3.2.10)
The Lagrangian for this system is

L = [[ 367362 L+cosp+6)+ye
+Z [ pudx(r + SN + 6)) + 1(s + SIN@ + 0) — y)?| dxdt.

The static equation for (3.2.10) is

Pxx = SNl +6) -y
—Z (26xxCOSE + 0) — g2 sin(p + 0) — cOsp + H)(sin(p + 6) — 7)), X # 0.
This equation is a regularly perturbed Hamiltonian systdth the Hamiltonian

1 & az
H= ¢§(§ + 1—Zcos@+6) + Y + COS(p + 6) — ﬂ(sm(¢+9) -y)%.
The analysis of the kink solutions will be very similar to thiee in the section with
a = 0. All phase portrait constructions in the next section ediry through for small
values ofa.

After considering several possible approximations, we refler Eq. (3.2.10) ashe
continuum approximation to the discreterGine-Gordon equation (3.2.3), with the
boundary conditions at the discontinuity poi O are given by [12, 13, 9]

lim ¢ = li [ = lim oy 2.11
gg«zﬁ nggab, J(%(ﬁx )'('ig(ﬁx 3 )
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3 Stability analysis of solitary waves in a 0-= Josephson junction

3.3 n-kink and its spectra in the continuum limit

Throughout all the section here we ta&ke= 0 in Eqg. (3.2.10), corresponding to
the ditferential equation for a perfect continuous long 0esephson junction

¢tt - ¢XX + Sln(¢ + 0) =Y. (3.3.1)

For a Josephson junction without an applied bias currentagpldase jump, i.ex =
0 andé(x) = 0, the basic (normalized) stationary, stable, monotolyiéatreasing
fluxon is given by

#n(X) = 4arctare, ¢u(0)=n (3.3.2)

(see [14)).

In general whem(x) # 0, the equation (3.3.1) will introduce a discontinuityxat O

for the second derivativg,y, hence a natural space for the solutions are the functions
which areC! in x. The behaviour at infinity is regulated by requiring that sioéution
belongs taH2(R).

The n-kinks are static waves, connecting equilibrium states -at+oco with a phase-
difference ofr. Therefore, we can drop the time dependency and considgrtioal
following static wave equation

by — SIN + 6) = —y. (3.3.3)

For |yl < 1, the fixed points of this model equation atg = arcsing) and¢; =
m—arcsing) whend = 0 andgg = m+arcsinf) andg; = 2r —arcsinf) whend = —x.
In the x-dynamics of (3.3.3), the points are saddle points and the points with
are centre points.

By taking suitable combinations of the phase portraitsffer 0 andd = —x, then-
fluxons are constructed in [8]. The phase portraits for fiked0 ord = —n fory =0
are essentially dierent from the ones for @ y < 1 (the case-1 < y < 0 follows
from this one by takingg — —¢ andy — —y). In casey > 0, we have homoclinic
connections akr + arcsing), k € Z, keven ¢ = 0) ork odd @ = —n). If y = 0, then
these homoclinic connections break to heteroclinic cotioes betweetkr +arcsinf)
and k + 2)r + arcsing).

Following the notation in [8}], in casey = 0, there are two types of heteroclinic
connections (fluxons) in the corner junction. The first oradled type 1and denoted
by ¢1(x; 0), connects 0 and. The pointin the phase plane where the discontinuity lies
is denoted byl; (0). The second one, callégpe 2and denoted by2(x; 0), connects 0
and 3r. Now the point in the phase plane where the discontinuityibedenoted by
d»>(0). This solution is not a semifluxon, but it will be importén the analysis of
semifluxons with a hump foy # 0 as will be discussed below.

If 0 < y < 1, then there are three typesmfluxons (heteroclinic connections) in the
corner junction, all connecting 0 and[8].2 The first semifluxon, calletype 1and

1 See Fig. 2.2 in Chapter 2 of this thesis.
2 See Fig. 2.3.
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3.3 «kink and its spectra in the continuum limit

denoted bypl(x;y), is a continuation of the connectionat= 0. The point in the
phase plane where the discontinuity lies is denoted;§y). This is a monotonically
increasingr-fluxon.

The second one is calldgipe 2and is denoted by2(x; y). In the limit fory — 0, it
breaks in the type 2 heteroclinic wave and the heteroclimimection betweervi3and
n. The point in the phase plane where the discontinuity lieteisoted byd,(y). This
n-fluxon is not monotonically increasing, but has a hump.

The third one is calledype 3and is denoted by3(x;y). In the limit fory — 0, it
breaks in the heteroclinic connection between 0 améi2d an anti-fluxon like the
type 1 wave which connectsrzandz. The point in the phase plane where the dis-
continuity lies is denoted bgs(y). Thisa-fluxon is also not monotonically increasing
and it has a hump, but lower than the hump of the type 2 wave.

If ¥ increases, the pointiz(y) andds(y) approach each other, until they coincide at

2
y=vy"= (3.3.4)
V4 + 72
at the point £ + arcsing*),0).2 At this point, the type 2 wave?3(x; y*) ceases to
exist (in the limit it breaks into half the homoclinic contien for x < 0 and the
full homoclinic connection fox > 0). The type 3 wave?(x; y*) consists of half the
homoclinic connection fox < 0 and the fixed point fox > 0.

If vy increases further, the poinds(y) andds(y) approach each other until they coin-

cide* at 5
Y=Y = (3.3.5)

Fory > ¢, No static waver-fluxons can exist.

Using the homoclinic (heteroclinic) connections in thetsyss withé = 0, 7, we can
describe the fluxon in more detail. Lgt(x; v) denote the even homoclinic connection
to arcsing) for 8 = 0 andy > 0. Fory = 0, let¢n(X; 0) denote the even heteroclinic
connection between 0 andr2Finally, let¢s(x;y) denote the solution of the system
with 8 = 0 andy > 0, which decays to arcsip) for x — +oo (i.e., the stable part of
the “tail of the fish” wheny > 0). Note thats(x; 0) = ¢n(X; 0) — 2.

Then we have for & y < y*

Sxy) = { M+ X)), for  x<0

ps(X+ X (7);y) +n, for x>0

i X+ X (y);y), for x<O
dx7) = { Pl X im)

(X + % (y);y) +7, for x>0

with i = 2, 3. The coordinate shiftg", i = 1,2, 3 are such that

di = (on(X"), Dx#n(X)) = (dsn(X) + 7, Dxpsn(X))-

3 See Fig. 2.5.
4 See Fig. 2.6.
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3 Stability analysis of solitary waves in a 0-= Josephson junction

Hencex;(y) = —x;(y). Note that bothx} and x} converge to 0 fory — »* and
X; = —oofory — y* andxg — +oofory — y*.

Fory > y*, we have

PE(xy) = { er(X+ X (y);y), for x<O
ps(X+ X, (¥);y)+m, for x>0
¢,3;(X; v) = Pn(X+ X3 (v);y), for x<O
ps(X+X5(y);y) +n, for x>0

Hence the homoclinic orbif, is replaced with the solutiops in the type 3 solution.

At y = 0, we have an explicit expression for thdluxons (see (3.3.2) for the expres-
sion of¢q):

41(x0) = da(x—In(L+ V2)), for x<O
m—¢a(-x—In(L+ Vv2)), for x>0 (3.36)
) { sa(x+In(1+ Vv2)), for x<0 o
$7(x0) =
3 —¢u(-x+In(1+ V2)), for x>0

Hence both functions are even and @6k, 0) + 6) is continuous and even, since
¢,(0;0)= % (mod 2).

For small value ofy, we can approximate the homoclinic orbj{(x; y) up to ordery
by using the 2-fluxon¢y and its linearization.

Lemma 3.1. Fory small, we have for the even homoclinic connecitigfx; v)
#n(%7) = ga(X+ Le() + ¥ $1(x+ Le() + ¥*Re(Xx+ La(y);7),  x<0, (3.3.7)

where L(y) is such thatd ¢n(L«(»); ») = 0. Then,

1 4
L.(y) = El Inyl+In ﬁ +O0(+fy) (3.3.8)
_ 1 & 1
d1(X) = 5 1+coshx+£ coshfdg} “oshx
— arctarg® (co)s(hx + sinhx). (3.3.9)

In here y?Ra(X + L(y);¥) = O(y), uniform for x < 0 and y¢1(L.(y)) = O(+\p).
Explicitly:

¢n(Lr) = 21 = 2V Ay + O(y). (3.3.10)
Furthermore ¢1(X; y) = O(1) and R(X; y) = O(1), uniform forX < 0.
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3.3 «kink and its spectra in the continuum limit

Proof. We introduce the expansion

On(X¥) = dalX + Le] + y1[X + Le(M)] + ¥*Re[X + L (y); 7.

Since it is more convenient in the following perturbatioralysis to follow the nor-
malization of¢g(X) (see (3.3.2)), we seiy(0;y) = n and thus shift the poirnt = 0

of ¢n(X; y) to a yet undetermined positidsy(y). In the new coordinates, the position
L.(y) > 0 is determined by the conditioﬁ(ﬁh(Lﬂ;y) = 0. By linearizing, it follows
that the equation fop; is,

2
L(X)¢1=-1, where L(X)= % — cos@n(X)). (3.3.11)

The operator/(x) is identical to the operator associated to the stabilityygk). The
homogeneous probleiy = 0 has the following two independent solutions,

X .
() = o + sinhx, (3.3.12)

whereyp(X) = 2dx¢f|(x) is bounded and'/u(x) unbounded ax — +oco. By the
variation-of-constants method, we find the general satuiio(3.3.11),

1 1™ ¢ 1
A+ = hx + =
* 2 coshx+ Zfo coshgfdf} coshx

+[B - arctare’| (co)s(hx

Yn(X) =

coshx’

#1 (XA B) =

+ sinhx),

with A, B € R. The solutiong,(x) of (3.3.11) must be bounded as— - and is
normalized byy;(0) = 0 (sincedn(0) = ¢7(0) = ). Thus, we find thalA = —% and
B = 0. Note that lim_,_, ¢1(X) = 1, which agrees with the fact that lim_., ¢n(X) =
arcsiny = y + O(y®). The solutiong,(X) is clearly not bounded as — oo, the
unbounded parts af;(x) and dixqﬁl(x) are given by

#1lu(X) = — arctare* sinhx, iq&llu(x) = — arctarg* coshx. (3.3.13)

It follows that¢1(X) = O( =) for someo > 0 if € = O( =), i.e., if x = o]logy| at
leading order. Using thls it is a straightforward procemnr show that the rest term
¥Y?Ro(X;y) in (3.3.7) is of the ordey? % for x = o] logy| + O(1) (ando > 0). Hence,
the approximation ofp,(x) by expansion (3.3.7) breaks down =rss of the order

[logy|. On the other hand, it also follows tha;ppr(x) = ¢n(X) + y¢1(X) is a uniform
O(y)-accurate approximation @#,(x) on an interval £co, L] for L = %| logy| + O(1).
Sincegn (L) + y¢1(L) = O(+fy) for suchL, we can compute, = %l logy| + O(1), the

value ofx at which

d d d d
0= (¥ = —¢épp,(><) +O0() = x4 + v d1lu(¥) + O0)-

We introduceY by e = —=, so that it follows by (3.3.2) and (3.3.13) thét= %
O(+fy), i.e.

1 4
L(y) = §| logy| + log 7; +O0(\y).

51



33.1

3 Stability analysis of solitary waves in a 0-= Josephson junction

A straightforward calculation shows that

¢n(Lx) = 21 = 2Ny + O(y).

Stability of the type 1 solution

We will show analytically that the type 1 wavg(x; y) is linearly stable for O<
v < vyo. To linearize about a solutiog (x; y), write ¢(X,t) = ¢.(Xy) + V(X 1),
substitute it in the model equation (3.3.1) and disregdrdigher order terms:

[Dyx — €OSE' (X; 7) + 6(X))] v = Dy V. (3.3.14)

Using the spectral AnsatZx, t) = e''V(x), wherev(x) is a continuously dferentiable
function and dropping the tildes, we get the eigenvalue lerab

L(xy)v= A2y, (3.3.15)
where£' is defined as
L(X;7) = Dyx = COSEL(X ) + 6(X)). (3.3.16)

The natural domain fof’ is C1(R) N Ha(R). We callA an eigenvalue 01;‘ if there
is a functionv € C1(R) N Hy(R), which satisfiesf'(x;y) v = Av. Since£' depends
smoothly ony, the eigenvalues of' will depend smoothly o too.

The operatorl' is symmetric, hence all eigenvalues will be real. A strdigiard
calculation gives that the continuous spectrungbfs in (—co, — /1 — y2)

Since the eigenfunctions are continuouslffetientiable functions itd,(R), Sturm’s
Theorem [15] can be applied, leading to the fact that thensiglees are bounded
from above. Furthermore, if; is an eigenfunction ofZ' with eigenvalueA; andv,

is an eigenfunction of’' with eigenvalue\, with A; > A,, then there is at least one
zero ofv, between any pair of zeros ®f (including the zeros at). Hence if the
eigenfunctionv; has fixed sign, than is the largest eigenvalue &f .

The following lemma gives a necessary andfisient condition for£' to have an
eigenvalue\ = 0.

Lemma 3.2. The eigenvalue problem
LxyV=Av, XeR,
has an eigenvalua = 0 if and only if one of the following two conditions holds
1. ¢! (0;y) = kn, for some ke Z;

2. Dy¢' (0;y) = 0and there are someysuch that Q¢! (x.;y) # 0.
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3.3 «kink and its spectra in the continuum limit

Proof. Sinceg! (x) converges to a saddle poid — oo, this implies thatDx¢.(X)
decays exponentially fast to 0 fpd — oo. Sinceg, (x) solves (3.3.3), dierentiating
this ODE with respect ta, gives

L(X) Dyl () =0, for x#0.

This implies that for any constaKt, the functiona (x) = K Dxg!(X) satisfiesZ (X) W (X) =
0 for x # 0. Hence for any)_ andK,, the solution

W) = { M 09, X <0
W'K+(X), x> 0.

solvesL (X)W (x) = 0 for x # 0. The functionw (x) is continuously dferentiable if
and only if the following two conditions hold

1. Wy (0-) = wi (0+), in other words,K_ Dxg:(0) = K, Dx¢}(0), sincegy, is
continuously diferentiable;

The first condition is satisfied K_ = K, or Dyx¢!(0) = 0. If Dy¢' (0) = O, we can
chooseK. such that the second condition is satisfied and we do not endthghe
trivial solution.

If Dyg!(0) # 0, we needyy@' to be continuous at = 0 in order to satisfy the second
condition. SinceDyyg! (X) = sin@! (X) + 6(x)) — v, Dxx¢'. is continuous ak = 0 if and

only if sin(¢!.(0)) = 0. These arguments prove that if one of the two conditions are
satisfied, ther\ = 0 is an eigenvalue aof'.

Next we assume that = 0 is an eigenvalue aof', hence there is some continuously
differentiable functiorv/(x) such that£'(x)vi(x) = 0 for x # 0 andv'(x) — O for

X — oo. The only solutions decaying to zero -ato are the solutions on the one
dimensional stable manifold and similarly, the only sauns decaying to zero ateo
are the solutions on the one dimensional unstable manifitié. stable and unstable
manifold are formed by multiples d3x¢§,. So we can conclude that there exist
such that

4 {K_ Dl (x) for x<0O;
V(%) = :
KiDyg!(x) for x>0.

Now we are back in the same situation as above, so we can danttiat either one
of the two conditions in the lemma must be satisfied. O

The second condition in the lemma does not occur. Indeedirst@art of the second
condition, i.e.Dx¢' (0;y) = 0 happens only ifi has its second coordinate zero, hence
only aty = y* for d, = d3. The solution?(x; y*) has ceased to exist and the solution
#3(x; y*) consists of the fixed point for > 0. Hence this solution does not satisfy the
second part of the second condition.
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3 Stability analysis of solitary waves in a 0-= Josephson junction

The first condition of the lemma is satisfiedyat y.; fori = 1, 3 (for this value ofy,
the solutionsp} and¢? are equal). Aty = y, the homoclinic orbig;, and the orbit
¢5 are tangential in the phase portrait, thus guaranteeirighieasecond derivative
Dqub;} is continuous ak = 0. To see that this is the only valuepfor which the first

condition is satisfied, we derive the relation betweb(®;y) andy. Multiplying the
static equation (3.3.3) witDy¢}, and rewriting it gives

Dl(#,(X 7))?] = 2D =4, (X; ¥) — 6(x) cos@ty.(x; ))].
Integrationtco to 0 and using thaDyg! (+0; ) = 0, shows
2[—y(¢5(0;7) — ¢ (—o0; 7) — 0S¢} (0;7)) + COS@}(—o0; 7))]
2[—y(#4(0;7) — ¢, (+00;7) + COSEL(0; 7)) — COSE)(+00;7))]

(¢:(07))?
(¢5(0;7))

Subtracting these two equations and using #gt;y) = ¢ (-co;y) + 1, we get
that

0= -1y —2cos(0;7)), hence cosf.(0;7)) = ”—27 (3.3.17)

If the first condition is satisfied, then c@§(0;y)) = 1, hencey = 7_2r = Yer.
Next we will show that the spectrum of the operafBris stable for 0< y < yer.

Lemma 3.3. Forall 0 <y < vy, all eigenvalues ofL%(x; y) are strictly negative. For
¥ = ver, the operatorL(x; y¢r) has 0 as its largest eigenvalue. For= 0, the largest
eigenvalue is-3(V5 + 1).

Proof. From Lemma 3.2, it follows thaL* has an eigenvalu& = 0 aty = y.. The
eigenfunction isDx¢(X; yer) and this function is always positive, singé(x; yer) is
monotonically increasing. From Sturm’s Theorem, it folpthatA = 0 is the largest
eigenvalue off* aty = yq.

We can explicitly determine all eigenvalues6t(x; 0). From the explicit expression
for ¢ it follows that £1(x; 0) is a continuous even operator. For fixedthe operator
L(x;0) - A has two linearly independent solutions. Since the fixedtdsia saddle
point, there is one solution that is exponentially decayabg oo and there is one
solution that is exponentially decaying-ab. If we denote the exponentially decaying
function at—co by v_(x; A), then the exponentially decaying function-sat up to

a constant is given by, (x;A) = v_(=x;A) (since £ is symmetric). Obviously,
v, (0;A) = v_(0; A), henceA is an eigenvalue iDyv, (0; A) = Dyv_(0;A), i.e., when
Dyv_(0;A) = 0 or whenv_(0;A) = 0.

Using Mann [16], we can derive explicit expression for the solutiong0; A) (see
also [14]). Usingx; = In(V2 + 1), we get

V_(x;0) = sechi — x1), V_(x;A) = &9 [tanh(x — x3) — ], = VA+1.

A straightforward calculation shows that(0; A) # 0. The conditiorDyv_(0;A) = 0
gives that

pz—%\/—Z,u—%zo, hence VA + =%‘/§(‘/5—1)1A=—%(\/§+1)-
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3.3 «kink and its spectra in the continuum limit

Figure 3.2: (a) The eigenvalue of the stable semifluxon as a functionebths curreny. The
dashed line is the boundary of the continuous spectrum. (bkeich of the evolution of a
n-kink in the continuum limit in the presence of a bias currabbve the critical value. The
release of fluxons can be seen as well. The plot is presentedhiis of the magnetic fielp,.

Now assume that the operat6t(x; y) has a positive eigenvalue!(y) for some 0<
v < yq. SinceA depends continuously on there has to be some€7y < ¢ such
thatA*(y) = 0. However, from Lemma 3.2 it follows that this is not possibl ]

The eigenvalues of the linearization are solution of theaéiqnA? — A*(y) = 0, hence
A = ++/A(y). SinceAl(y) < 0, this implies thalR (1) < 0, hence the waves of type 1
are stable.
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3.3.2

3 Stability analysis of solitary waves in a 0-= Josephson junction

We also have used numerics using standard procedures in MBTa compute the
eigenvalues of this stable semifluxon as a function of thdieghpias current. Fur-
ther explanations of the computation procedure will be gméed later in Sec. 3.6.
In Fig. 3.2(a), we show the first two largest eigenvalues efgamifluxon obtained
numerically.

One can see that the largest eigenvalue tends to zero wheraheurrenty ap-
proaches the critical ong, as is calculated analytically. The critical curregt has
been calculated before in [12, 13, 9, 8]. It was first propasé¢tl?, 13] that a constant
driving force can excite the largest eigenvalue of a senufiubowards zero. Later, it
is shown in [8] that the critical current indeed correspotudhe disappearance of a
static semifluxon.

When we apply a bias current above the critical value, theifieran reverses its

polarity and releases a fluxon. As long mss larger thany., the process repeats
itself. The semifluxon changes its direction back and forttilewreleasing a fluxon

or antifluxon alternately. A sketch of the release of fluxormrf a semifluxon is

presented in Fig. 3.2(b). In experiments, the polarity oemifluxon can also be
reversed by applying a magnetic field [7].

Wheny = vy, there is at least one eigenvalue bifurcating from the eddlkeocon-
tinuous spectrum. This conjecture is obtained by considesiso the stability of a
type 3 semifluxon which is discussed later in SubsectiorB3.A.similar picture as
Fig. 3.2 for a type 3 semifluxon is presented in Fig. 3.4. Frbat figure, one can
deduce that a type 3 semifluxon fpe= y. has at least two eigenvalues, one of which
is attached to the continuous spectrum. Because a type fiwemniis the same as a
type 3 semifluxon whe = vy, we can conclude that at that value of bias current, a
stable semifluxon has an additional eigenvalue.

Next we will prove that the type 2 and type 3 waves are lineanistable for all values
of y for which they exist.

Instability of type 2 solutions

Lemma3.4. For all 0 < y < y*, the largest eigenvalue af?(x; ) is strictly positive.
In the limity — 0, the largest eigenvalue di?(x; y) converges tc%( V5-1).

Proof. Using the approximation for the homoclinic orit(x; y) in Lemma 3.1, we
see that, fory small, an approximation for the-fluxon of type 2 is given by (recall
thatx; = In(1+ V2))
$n(X+x1) +O(y), x< 0
7+ ¢ (X — X1) + ypa(X — X1) + Y Ra(X = X1;7),

0< x< L(y)+ X1

T+ ¢a(=%) + y1(=%) + YRo(=X7), X > La(y) + X

PAX;y) =
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3.3 «kink and its spectra in the continuum limit
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Figure 3.3: (@) The eigenvalues of type 2 semifluxon as a function of tiereal forcey. The
result that the largest eigenvalue is always positive sttbesnstability of type 2 semifluxon.
Wheny — 0, A — %(\/5 — 1) which is the largest eigenvalue of3a-kink. There are two
eigenvalues bifurcating from the edge of the continuoustspen (dashed line). (b) A sketch
of the evolution of 8&r-kink (3.3.6) in the continuum limit. The separation of a twfrom the
semifluxon can be seen as well. The plot is presented in tefthe aagnetic fielay.

With X'= X=2L(y) X4, sincex; (y) = X1~ L (y)+O(y) andx; (y) = —X1—L(y)+O(y).

There is no limit fory — 0, since the fluxon breaks in two parts, one of them being the
3n-fluxon denoted by?2(x; 0). In a similar way as we found the largest eigenvalue for
the linearization operatof*(x; 0) about ther-fluxon ¢1(x; 0), we can find the largest
eigenvalue for the linearization operatgf(x; 0) about the 3-fluxon ¢2(x; 0). The
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3 Stability analysis of solitary waves in a 0-= Josephson junction

largest eigenvalue i&%(0) = ;11( V5 - 1) and the eigenfunction is

g0, — tanh + x1)), X <O

y2(x0) = ,
g4y — tanhx+ x1)), x>0

whereu = VA +1=1v2(1+ V5).

Fory small, we approximate the eigenfunction on the whole irglex\e R by

e (i — tanh + 1)) + O(+f), X <0,
ko €% (4 — tanh(x + X))+

ks €0 (1 — tanh — x1)) + O(1f7), 0 < X < La(y) + X1
ks €0 (1 + tanh ) + O(17), X > La(y) + X1

vA(xy) =

In this approximation, we include the secular term whichrimagng at infinity with
the multiplication factoks. Wheny = 0 andks = 0, the first two lines in the defini-
tion of ¥ describe an eigenfunction of the linearized problem aboaitieteroclinic
connection between 0 and.3The corresponding eigenvalueﬁiS«/ﬁ -1).

When we construct an eigenfunction of the fog(x, y) given above fory > 0, we
need to determine the constakis ks andk, such that the function is continuously
differentiability atx = 0 andx = L.(y) + x;. From the continuity conditions at= 0,
we obtain:

V2
ke = m, (3.3.18)
(3+2V2)(2u® — V2 - 1)(2u - V2)

ks = (3.3.19)

Au(u? - 1)

From one of the continuity conditions at L,(y) + X1, we determindy as a function
of ko andks. Now we are left with one more matching condition. Values:dbr
which this condition is satisfied correspond to the eigamesbf the operataf?(x; y)
for vy small. More explicitly, the spectral parametehas to satisfy the equation

F(u) = 16'ks(u — 1Y(yn) #((3u + &)y + 16u) + O(y #+2) = 0. (3.3.20)

Whenvy = 0, it is as expected that there are four positive roots gifing squared
eigenvalues, namely(0) = %(\/3 -1), —%, and the double eigenvalug0) = 0. The
first two come from the zeros & and the last ones are the eigenvalues of the fluxon.
One can also notice that there is no term with a multiplicatéxtork; to this leading
order. This term appears at most of ord¢y“+2).

The proof that the largest eigenvalue is nk@m@ —1) fory small will be complete if

we can show thaf, ( V2/4(1+ \/3)) # 0, i.e. the non-degeneracy condition that says
that the eigenvalue can be continued continuouslyfemall.
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3.3.3

3.3 «kink and its spectra in the continuum limit
Simple algebraic calculations give that

7, (?(h «/?9] =y ¥ 0ptEEE) @321

with ¢, a positive constant. Hencg, (22(1 + V5)) > 0.

This finally shows that the largest eigenvalue is nﬁaw/g — 1) for y small but pos-

itive. Since the largest eigenvalue depends continuously, @ can only disappear
at a bifurcation point. There are no bifurcation points anid not possible that the
eigenvalue becomes 0 (see Lemma 3.2), hence the largestalige will be positive

as long as fluxo2(x; y) exists, i.e., for 0< y < y*. O

Remark 3.1. We cannot use a comparison theorem, becagise ¢° for x < 0 and
#2 > ¢3 for x > 0.

The eigenvalues for the linearizations are solution of thpgagion1?> — A%(y) = 0,
henced = ++/A2(y). SinceA?(y) > 0, this implies that one of the two eigenvalues
hasR(1) > 0, hence the fluxons of type 2 are unstable. The numericatlyirdd
eigenvalues of semifluxons of this type as a functiof afe shown in Fig. 3.3(a). In
Fig. 3.3(b), we present the evolution of a-Rink (3.3.6) which is the limit of a type

2 semifluxon whery — 0. The separation of a fluxon from the semifluxon is clearly
seen and indicates the instability of the state.

Remark 3.2. A type 2 semifluxon can be seen as a concatenation of argl a—27-
kink which is clear in the limity — 0. Therefore, in that limit the other eigenvalues
of £?(x;y) converge to 0--0.5, and—1. The eigenvalues 0 andl are contributions
of the antikink. The eigenvalug?(0) = —0.5 corresponds to the first excited state of
a 3r-kink with eigenfunction

g0, — tanhf + x1)), X <0

y?(x 0) = ,
g (tanhEx + x1) — ), x>0

=/ =L
whereu = VA + =5

Instability of type 3 solutions

Lemma3.5. Forall 0 <y < vy, the largest eigenvalue di®(x; y) is strictly positive.
For y = vy, the operatorL3(x; y¢) has 0 as its largest eigenvalue.

Proof. The solutionp3(x, yer) = ¢1(X, yer), hence from Lemma 3.3 it follows that the
largest eigenvalue &3 = 0.
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3 Stability analysis of solitary waves in a 0-= Josephson junction

Forvy near zero, we will use the approximation in Lemma 3.1 for theabclinic orbit
#én(X; y) to get an approximation for the type 3 fluxon

$1(X) + y91(X) + ¥*Rao(X 7), X < —Lo(y) + X
dr(=X+ X1) + Y1 (=X + X1) + Y2 Ro(=X + X1 ),

—L:(y)+ X1 <x<0

¢3Xy) =
T+ ¢a(=X—X1) +O(y), x>0

whereX = x — xg + 2L.(y).

For the largest eigenvalue, we set

A%(y) = YA ().

To construct the first part of the approximation of the eigecfion, we considex <
—L(y) + X1, i.e.,X < L(y). In this part of the arguments, we will drop the haiin
On (oo, L), we expand//gIpprox = Yo + Y1, this yields the following equations for
Y01(X),

Lo =0, L =[A1(0) - p1(x) singn(X)]o. (3.3.22)

We seleciyg(x) uniquely by assuming that(x) — 0 asx — —oco and thaty(0) = 1,

(3.3.23)

(see 3.3.12). To solve thg;-equation, we note tha&qﬁl(x) is a solution of (see
(3.3.11) and (3.3.2))

. d .
Ly = —¢1singy &tﬁﬂ = —2¢1 Singayo,

so that we find as general solution,

_ a1 g 1
yix) = [A 2A1(Iog(coshx) +f0 cosﬁgdf)] = +
1 X . 1d
[B+ EAl tanhx](m + S|nhX) + E&(ﬁl

By imposing lim,_« ¢1(X) = 0 andy1(0) = O we find thatA = 7, B = %Al(O). As
in the case ob1(X), we are especially interested in the unbounded parngs ©d) and
d

(%),

Yalu(X) $A1(1 + tanhx) sinhx — $ arctare coshx,

3.3.24
d%(¢1|u(x) ( )

£ A1(1 + tanhx) coshx —  arctare* sinhx.

We note that the error terfur(x) — yz,,{X)| = ¥*S2(X; y)| is at mosO(y) on (-co, L)
(the analysis is similar to that fo|Rx(X; y)|).
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3.3 «kink and its spectra in the continuum limit

Next consider the second part of the approximation, x&etween-L,(y) + x; and
0. Here we define the translated coordimatex;, which is on the interva{L,, —x;).
Since we have to matalx,,,(X) to the approximatiog3,,(x) of y(x), alongez,,(x)
and is thus defined on the intervall(;, —x;), we need to compuw;ppr(L,,) and
d%z//;ppr(L,,) which to the leading order are calculated from (3.3.24), i.

2A1(0)
T

2A1(0) v/
\r

Thus, bothyd,,(Lx) and Lyl (L,) areO(~/7). Now, we choose a special form
for the continuation ofy(x), i.e. the part linearized alon@pp,(x). It is our aim to
determine the value o1, for which there exists a positive integralilé solutiony of
L3(x;y)y = yA1(O)y. By general Sturm-Liouville theory [15] we know that thidwa
of A; must be the critical (i.e. largest) eigenvalue. Our stwaisdo try to continue
¥(X) beyond (oo, L,) by a function that remains at mag¢+/y), i.e. we do not follow
the approach of the existence analysis and thus do not reﬂmbtranslata/;ppr(x)
to constructl//gpp,(x) (since this solution becomes (in gener@l)l) for x = O(1)).
Instead, we scalg(x) asyy(X). The linearization(x) alongqﬁgpp,(x) on the interval
(-Lx, X2) must solveLy = O(y), thus, at leading order

d
Vapp L) = V7 +00), g VapplLs) = V7+0@). (3.3.25)

B( + sinhx). (3.3.26)

b(x) =

+
coshx coshx

The approximation2,,(X) = y¥(x) must be matched tpl,,(L.) and Ly3,,(L) at
X=-L,,ie.

2A1(0) 2B 2A1(0)-7 _ 2B
VN VR

Note thatA does not appear in these equations; as a consequxég&e() andlpgppr(x)
can only be matched for a special value/of, A1(0) = %n, with B = —A1(0) <
0. Thus, we have found for this special value/of and forA > 0 a positiveC*-
continuation of the solutiog(x) of the eigenvalue problem faf3(x; y) — recall that
x < 0 in the domain ofi(x). At the point of discontinuity{x; for #(x), or atx = 0 in
the original coordinates of (3.3.1)), we have

+ O(+fy), + O(+/fy).

Wapp—X0) = yi(=x1) = 713 V2A - £ V2(log(V2 - 1) - V2)] + O(),

SWopl=X1) = y&d(=x1) = y[3A - §(log(V2 - 1) + 3V2)] + O().

(3.3.27)

Hence, we have constructed for a special choic&,of = A. = 7y + O(4/y) > 0, an

approximation of a family of positive solutions of the eigahue problem for£3(x; y)

on x < 0 —in the coordinates of (3.3.1) — that attain the valuesrghe (3.3.27) at

x = 0, and that decay to 0 as— —co. The question is now whether we can ‘glue’

an element of this family in &'-fashion to a solution of the eigenvalue problem for

L3(x;y) onx > 0 —with A = A, — that decays (exponentially) as— co. If that is

possible, we have constructed a positive integrable swiut the eigenvalue problem

61



3 Stability analysis of solitary waves in a 0-= Josephson junction

for £3(x;y), which implies thatA. > 0 is the critical eigenvalue and thaf(x) is
unstable.

An approximation ofs(x) on x > 0, ¥3,,(X), is obtained by linearizing alongg,,(x)
and by translating so thatx € (X, ). Sincewgpp,(x) has to match to expressions of
O(y) (3.3.27) atx;, we also scal@3,,(X), ¥3pp(X) = y(X). We find thatLy = O(y)

so thaty(x) again rlas to be (at leading order) a linear combina}iomg(x)Aandz//u(x)
(3.3.12). Howevery must be bounded as— oo, which yields that/(x) = A/ coshx+
O(y) for someA € R. At the point of discontinuity we thus have

I1V2Ay + 00,
-3Ay +0(?).

Yl/A/(Xl)
)’d%lZ(Xl)

1/ gppr(xl)

(3.3.28)
%lﬂ gppr(xl)

A positive gl-Asqution of the eigenvalue problem fg®(x; y) exists (forA = A,) if
there existA, A > 0 such that (see Egs. (3.3.27) and (3.3.28))

JV2A - £V2(og(V2-1)-V2) = $V2A

. (3.3.29)
3A - §(log(v2-1)+3V2) -3A

Since the solution of this system is given By= 1z[ V2 + log(V2 - 1)] > 0 and

A= %n V2 > 0, we conclude that the eigenvalue problem fortHuxon¢3(x; y) has
a positive largest eigenvalue

A, = %y +O(V7). (3.3.30)

Hence the eigenvalue for small is positive. From Lemma 3.2 it follows that there
are no zero eigenvalues between 0 gg¢ hence the largest eigenvalue 6%(y) is
positive for all values o§. O

Remark 3.3. For anyd = O(+fy), or equivalently anyA; = O(1), there exists a
(normalized) solution to the eigenvalue problem #(x;y) on x < 0 that decays
asx — —oo, and that is approximated hy;,,(x) andy3,,(X) (matched in aC'-
fashion attL,). If A1 is notO(+fy) close toin, however,(pgpp,(x) cannot be scaled
asyy(x) and the solution is na®(y) at the point of discontinuity — in general it is
O(1). Moreover, for any\; = O(1), there also exists an> 0 a 1-parameter family of
(non-normalized) eigenfunctions for the eigenvalue peabfor £3(x;y) that decay
asx — co. In this family there is one unique solution that connectsticmously to
the (normalized) solution at < 0. In fact, one could define the jump in the derivative
atx = 0,9(1;v), as an Evans function expression (note fiél; y) can be computed
explicitly). By definition, is an eigenfunction of 3(x; y) if and only if 7(;y) = 0.

In the above analysis we have shown th4fl.; y) = 0.

Remark 3.4. The classical, driven, sine-Gordon equation, ie= 0 in (3.3.1), has
a standing pulse solution, that can be seen, especially farpP = vy < 1, as a
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3.3 «kink and its spectra in the continuum limit

-0.2
<
-0.4
-0.6
_0.8/)/— -
-1 : ! . . .
0 01 02 03 04 05 06 07

Figure 3.4: The eigenvalues of type 3 semifluxon as a function of the patéorcey. The result
that the largest eigenvalue is always positive shows thabilgy of type 3 semifluxon. When
v < 1, according to Eq. (3.3.30) the largest eigenvalue is apprabed byA = %y shown in
dash-dotted line. The dashed line is the boundary of théraamis spectrum.

fluxoryanti-fluxon pair. This solution is approximated f§;¢ > 0 (the fluxon) by
¢2opX) and for ¢ < 0 (the anti-fluxon) bygZ,,(-x). It is (of course) unstable,
the (approximation of the) critical unstable eigenvalue lba obtained from (3.3.25).
The corresponding eigenfunction is approximatedbléyp,(x) on (-0, L,), and we
conclude from (3.3.25) thafy?,,(Lr) = 0 for 22 = yA; = y§ + O(y v7) (while
YaoplLs) > 0). Hence, for this value of1, we can matchy},,(X) to y3,,(X) =
Yappd—X) in aC*-fashion, it gives a unifornd(y)-approximation of the critical, posi-
tive (even, ‘two-hump’) eigenfunction of the fluxmti-fluxon pair at the eigenvalue
A = iV2rnyy+0@) > 0.

The eigenvalues for the linearizations are solution of ty@agion 1> — A3(y) = 0,
henced = ++/A3(y). SinceA3(y) > 0, this implies that one of the two eigenvalues
has®®R(1) > 0, hence the fluxons of type 3 are unstable. In Fig. 3.4, weeptes
numerical calculations of the eigenvalues of type 3 senuftuas a function of the
bias curreny.

Remark 3.5. A type 3 semifluxon can be seen as a concatenation of ari a—x-
kink. This can be seen clearly in the limit— 0. Therefore, in that limit the other
eigenvalues of’3(x; y) converge to—;ll( V5+ 1) and—1 which are contributions of the
—n- and Zr-kink, respectively.
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3 Stability analysis of solitary waves in a 0-= Josephson junction

25 i ; ; — T T ——z

Figure 3.5: The phase portrait of the systg(®.2.10)with a = 0.5 for y = 0. The dfect of the
perturbative term is shown by comparing it with the phasérpirof the unperturbed system
a = 0 shown in dashed-lines.

Lattice m-kinks and their spectra in the discrete case:
continuum approximation

Now we consider the continuouss0sine-Gordon equation with the continuum
approximation to the discreteness Eq. (3.2.10). Using dethat the semifluxons
of all types are constructed by heteroclinic connectiorth wansversal intersection
at x = 0 in the two-dimensional phase space, we can directly gtegahat all the
semifluxons still exist in the perturbed system Eq. (3.2[10). In Fig. 3.5, we present
the phase portraits of the perturbed and the unperturbéeisys

For small value of, we can approximate the heteroclinic orbit connecting 0 2nd
(mod 2r) up to ordera? by using the 2-fluxon ¢y and its linearization.

Lemma 3.6. Let¢(x) denote the heteroclinic orbit of the sine-Gordon equatidh w
the perturbation term representing the continuum appration to the discreteness
(Eq. (3.2.10)with 8 = 0) with y = 0. For a small, we have for the heteroclinic
connection(x)

$i() = ¢n(x) + a°¢a(X) + O(@%), (3.4.1)
where
1 -3 sinhx + xcoshx
al\X) = — 75 . 4.2
¢a(X) 12 cosH x (3-4.2)

Furthermore g,(x) = O(1), uniformly for xe R.
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3.4 Lattice »-kinks and their spectra in the discrete case:
continuum approximation

Proof. The spatially localized correction to the kink shafpé€¢x) due to the perturba-
tion term representing discreteness is sought in the fortheoperturbation series:

$i(9) = ¢n(x) + a¢a(x) + O(@"%.
It is a direct consequence thaf(x) must satisfy the equation:

L% 0)ga(X) = F(X) = =5 (20xH(X; 0) cOSBL(x; 0) + 6)—

(3.4.3)
(0xp1(x; 0))? sin(p(x; 0) + 6) — cospi(x; 0) singl(x; 0)),

where £1(x; 0) is the operator given in (3.3.16).

Using the variation of constants method, we obtain the gdsetution of (3.4.3), i.e.

#a(X) = A sechx+ B(x sechx+ sinhx), (3.4.9)
1 coshx — 1 -sinhx) 6sinhx 4sinhx X E1()
A = — |21 -
Aot 24 n(coshx— 1+ sinhx) coshx  cosh x * o cosh¢ Jak

1 1 3
B = Bo——|2+— ——>_|.
0 24[ cosH x cosﬁ‘x]

The integration constant, and By are determined by the conditions fo4(x). Ap-

plying lim,—, . ¢a(X) = 0 andga(X) = 0 yieldsAg = 0, By = 55. The continuity of

Dx¢a(X) is automatically satisfied by its symmetry with respecttoe 0. O

Using the same procedure, the localized correction torthend 3r-kink due to the
discreteness term up to ord@¢a®) can be presented as follows.

Lemma 3.7. For a small andy = 0, we have an explicit expression for theand
3r-fluxon up to ordeO(a?), respectively:

—ul(x-In(1+ V2)), for x<O
+ul(-x-In(1+ v2)), for x>0

—u} (x+In(L+ v2)), for x<O
+u (-x+In(1+ V2)), for x>0

(% a0) = ¢X(x; 0)+{
(3.4.5)
P2(x;a0) = ¢2(x; 0)+{

with ¢1(x; 0) and¢2(x; 0) are given in (3.3.6) and

(-3+6 co§(g) +1n sin(g) “In cos%) + 3tanhx — x)

1
Ty _
Ur() = 12 coshx

1oy = (3_ Ty _Insin(* - _
u3”(x)_12cosh<(3 600§(8) Insm(8)+lncosg)+3tanhx X).
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3 Stability analysis of solitary waves in a 0-x Josephson junction

Due to the discreteness term, there is also correctigh &mdy., [9], i.e.

2 2 bd

* — 2 4
Y@ = \/m+§7r4+87r2+16a +0(a"), (3.4.6)
——————
~0.0109
1- 47— n+ 2arcsing)
yald) = 2+ d a7 a2 +0(@a%). (3.4.7)
~0.0223

Fory > y«(a), there is no static semifluxon.

3.4.1 Stability of type 1 semifluxon

We will show that the type 1 wavgl(x; &; y) is linearly stable for nonzeraand
0<¥y<7ver

The eigenvalue problem of a soluticb'p(x; a;vy)is
Ly )v= A2y, (3.4.8)
where£'(x; y) is now defined as

L(%7) = Dyx — COSEl (X 8 7) + 6()). (3.4.9)

The following lemma gives a necessary andfisient condition forL(x;y) to have
an eigenvalue = 0 for a nonzera.

Lemma 3.8. The eigenvalue problem
LxyV=Av, XeR,
has an eigenvalua = 0if and only if one of the following two conditions holds
1. ¢(0;a;y) = kr — a?& + O(a®), for some ke Z;
2. Dy (0;8a;y) = 0 and there are someysuch that Q¢! (x.; a;y) # 0.

Proof. This lemma modifies Lemma 3.2 for the case of nonzerdhe proof ismu-
tatis mutandis the same as the one of Lemma 3.2, but we have

Duxgr(X; @) = sin(@l(x; @) + 6(x)) — y+
L (sin@’(x; @) + 6(x))(=2y arcsiny — 2/1— 2 + y¢l(x; a)+
cos@l(x; @) + 6(X))) + cos@! (x; a) + 6(X))y)a® + O(@%).
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3.4 Lattice »-kinks and their spectra in the discrete case:
continuum approximation

The first condition of the lemma is satisfiedyat y.(a) fori = 1,3.

Next we will show that the spectrum of the operafth(x; y) is stable for 0< y <
Yer(8)-

Lemma 3.9. For the discreteness parameter gfgtiently small and < y < y(a),
the largest eigenvalue of*(x;y) is strictly negative. Fory = y..(a), the operator
LY(x;y(a)) has 0 as its largest eigenvalue. Fpr= 0, the largest eigenvalue de-
creases as a increases and is proportionatf( V5 + 1) — 0.06522 + O(a%).

Proof. Writing v(x) = V(x)+a?v}(x)+O0(a*) andA = Ag+a’A1+0(a*) and expanding
the eigenvalue problem for the stability #f(x; a; 0) in a Taylor series result in the
following equations

(£ 0) = A0) (¥ = O,

_ (3.4.10)
(£206.0) = Ao) V*(¥) = (A1 = U2 sin(BH(x; 0) + 6)) V°(x) - 9(X),

with (see Lemma 3.3)

)

P00 - { g0 V2) [anh - In(L+ V2)) - 4], for x <0
g(x-N@WV2) [tanhx — IN(L + V2))—p], for x>0
p=vVRho+1, Ao=-% V5+1),
900 = 5 [2V0A0 + V0 + 208, COSBL(X; 0) + 6) — 2 Co$(L(x; 0) + O)V°
—20,(p3(X; 0)) SIN@2(X; 0) + OV — 20x¢3(x; 0) Sin@2(x; 0) + O)V2
—(9xX(x; 0))2 COSBL(X; 0) + OV — VOA2 — 2°Aq Cospl(x; 0) + 6) .

The parameter value df; is calculated by solving (3.4.10) for a bounded and de-
caying solutionv}(x). The general solution can be derived by using the variation
constant method because we have the homogeneous solutitthresexjuation. One
can also use the Fredholm’s theorem (see, e.g., [18]) hieesifficient and necessary
condition for (3.4.10) to have' € Ha(R) is provided that the inhomogeneity is perpen-
dicular to the null space of the self-adjoint operatord{x; 0). In our case, we need
to look for the solvability condition on half of the real lirmmly because solution on
the other semi-infinite domain will exist automatically esatisfiesv*(x) = Kvi(-x),
with K is a suitably chosen constant.<f> denotes an inner product ky(R) over

R* orR~, then we obtain

< (LY(% 0) = Ag)VE VP >=< VE, (LY(x; 0) = Ag)\P >,
& < AP — utWPsin@l(x; 0) + 6) — g,\° >= 0,
e A 3584(70v2(1+ V5) - 99(1+ V5))

' 24576(70V10- 3502 + 495+ 995)
~ —0.0652 (3.4.11)
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3 Stability analysis of solitary waves in a 0-x Josephson junction

Now assume that the operat6t(x; y) has a positive eigenvalue!(y) for some 0<
v < vyer(@). SinceA depends continuously an there has to be some<d7y < y¢(a)
such thatA(y) = 0. However, from Lemma 3.8 it follows that this is not possibl

O

Instability of type 2 semifluxon

We are not going to proceed discussing the stability issuseofifluxons of this
type since the largest eigenvalue of the semifluxon is quittable fora — 0. In-
troducing discreteness will not immediately stabilize seenifluxon. Here, we will
consider only the special case wheg 0.

Note that this semikink can be seen as a concatenation afkinR and a—2x-kink
which is clearly seen in the case pf= 0. For this value ofy, the largest eigenvalue
of semifluxon of this type is equal to the largest eigenvafuse 3r-kink.

Because a2-fluxon in the 'ordinary’ sine-Gordon equation can be pinbgdhe dis-
creteness, one might expect to have a stahi&iBk in the discrete Or sine-Gordon
equation. A stable state might exist when the repellingddretween the semifluxon
and the fluxon is smaller than the energy to move a fluxon alattigés (the Peierls-
Nabarro barrier, see Remark 5.6). But for this kind ofik@nk solution as is expressed
analytically in Eqg. (3.3.6), we will show using the pertutiba method that the dis-
creteness cannot stabilize this kink r<« 1. The largest eigenvalue grows even
as the discreteness paramegéncreases. Later on in Section 3.6, we will show nu-
merically that there is no minimum coupliragfor this semifluxon to be stable. A
semifluxon of this type will always be unstable in its existemnegion.

Lemma 3.10. For the discreteness parameter gfgtiently small, the largest eigen-
value of £2(x;0) is strictly positive. Moreover, it increases as a increasesl is
proportional to( V5 - 1) + 0.06522 + O(a%).

Proof. Notice that the analytic expression otaand a &-kink differs only in the sign
of the ’kink-shift’ (see Eq. (3.4.5)). Because of this, we chirectly follow the proof
of Lemma 3.9. Writing the largest eigenvalue of/aknk asA = Ag + a?A1 + O(@%),
with Ag = (V5 — 1)/4 as has been calculated in Lemma 3.4, then we conmpute
be:

3584(665857¢/5 — 1) — 470832v2(V5 + 1))

24576(3329285 2354160v2 — 665857V5 + 470832V10)
0.0652 (3.4.12)

A =

Q

O

This result says that up to ord@(a*) introducing the discreteness even destabilizes a
3r-kink compared to the corresponding solution of the corttiralequation.
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3.4.3

3.4 Lattice »-kinks and their spectra in the discrete case:
continuum approximation

Instability of type 3 semifluxon

Semifluxons of type 3 have been shown in Lemma 3.5 to be weaidyable.
Then it is natural to expect that the perturbation term regméng discreteness might
stabilize the semifluxon. This is however not the case.

Lemma3.11. Forall 0 < y < y¢(a) and a small, the largest eigenvalue61(x; y) is
strictly positive. Fory = y.(a), the operatorL3(x; y¢;) has 0 as its largest eigenvalue.

Proof. Let ¢3(x; a; y) represent the type 3 semifluxon for a small non-negativeeval
of a. The solutiom3(x; a; ycr(a)) = ¢2(X; & yer(@)), hence from Lemma 3.9 it follows
that the largest eigenvalueAs’ = 0.

We are going to follow the proof of Lemma 3.5. For this, it iscassary to scale
the parametea in Eq. (3.2.10) toy/ya, i.e.a®> — ya®. Fory anda near zero, an
approximation for the type 3 fluxon now can be written as

$1(X) + y$1(X) + ya¢a(X) + ¥’ Re(X 7). X < —L(y) + X1
B (=X + X0) + ydr(—X + X1) + Y?Ro(=X + X1, 7) + O(ya?),

—L(y)+x <x<0

P3(xy) =
T+ $a(=X— X1) + O(y, ya?), x> 0

whereX = x — xg + 2L.(y).
For the largest eigenvalue, again we A&ty) = yA1(0).

Next, we can recalculate the results of the proof of Lemmad/ now with some
additional new terms.

First, we consider the first part of the approximation of tigeerfunction, i.e. the
approximation orx < —L,(y) + X1 or X < L,(y). In this part of the arguments, again
we drop the hat iiX. On (-, L,), the general solution of the eigenvalue problem of
the ordeiO(y) after expanding3,prox= Yo + Y1 is

1
coshx

i) = [%—%Al(log(coshx)+ fo Cojﬁgdg)] (3.4.13)

X
cos

+[%A1(0) + %Al tanhx](
&

360 + 1)

16In@ + 1) + 1) + 137+ €*(151+ 30x + 16 In 2)+ 7™

+sinhx)+} i +i
hx 2 (ax? * ax’e

[161n 2+ €*(32In 2 295+ 60X) + 30x—

We note that the error termy(X) — ya,,(¥)| = ¥?IS2(x;y)| is still at mostO(y) on
(_007 LIT)
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Next consider the second part of the approximation, x&etween-L,(y) + x; and
0. Here, as before, we define the translated coordixate;, which is on the inter-
val (-L,, —x1), and scales(x) asyy(x). The linearizationy(x) alongq&gppr(x) on the
interval (L, —x;) must solve£y = O(y). Thus, at leading order

- A
v = coshx +B(

coshx + sinhx). (3.4.14)

The last part of the approximation ¢fx) onx > 0, lpgpp,(x), is obtained by lineariz-
ing alongqﬁgpp,(x) and by translating so thatx € (xg, ). We also scalepgpp,(x),
$3op¥) = ¥(x). Howevery must be bounded as— oo, which yields thaty(X) =
A/ coshx + O(y) for someA € R.

After defining all parts of the approximate eigenfunctionadirthe real line, now we
have to connect them in@t-fashion. This can be done for a specific combination of
A1(0), A, B, andA, i.e.

A1(0) = i+ 1ka%,  B=-A(0)<0,

A=1n[V2+log(vV2-1)]>0, A=izv2>o0.

Now, we can conclude that the eigenvalue problem fortfiexon ¢3(x; a;y) has a
positive largest eigenvalue

A, = (% + %):f)y +O0(V9). (3.4.15)

Hence the eigenvalue fgrsmall is positive. From Lemma 3.8, it follows that there
are no zero eigenvalues between 0 agg hence the largest eigenvalue 6¥(y) is
positive for all values of. O

Semikinks in the weak-coupling limit

Now we consider the discrete/sine-Gordon equation (3.2.3). The time inde-
pendent equation of (3.2.3) corresponds to the so-call@ddard or Taylor-Greene-
Chirikov map whery = 0 [19] and Josephson map wher: 0 [20].

In this discrete system, one would expect that the threestgpgemikinks discussed in
the previous sections should be present. Yet, not all ofyihes of the semifluxon can
be studied analytically. This is because it is not clear Wkemifluxons in the discrete
case that can be continued from and to the continuum limitst\db configurations
in the discrete case will end in a saddle node bifurcatiody @re configuration that
corresponds to the type 1 semifluxon is known which in the uptad limita — oo,
is given by

arcsiny, n=0,-1,-2,...

PH(; 003 y) = _ (3.5.1)
m+arcsiny, n=123,....
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3.5 Semikinks in the weak-coupling limit

Therefore, in this section we will only discuss the type 1 $leixon. Nonetheless,
let us denote the lattice semifluxon of tyipeith lattice spacing that corresponds to

¢r(Xy) asgy(n; &), n€ Z.
The existence of the continuation of (3.5.1) foffitiently largea is guaranteed by
the following lemma.

Lemma 3.12. Let us denote = 1/a%. The steady state solution representing the
semifluxon of type 1 in the uncoupled limit 0, ¢2(n; oo;y), can be continued for a
small enough. Foy smally = €y, the solution up t@(e?) is given by

ey +0(), n=-1,-2,-3,...

1 4 ) — e(r+75) +0(6?), n=0, 3.5.2
or(n; &;y) TteF-m)+0(), n=1, (3.5.2)

1+ey+0(), n=234....

For vy close to one = 1 — €y, the solution up t@(e') is given by

72— \e\Zy + O(¥?), n=-1,-2,-3,...
n/2— Ve 2 —n) +O(e), n=0,

) = 3.5.3
¢n(ma;y) 3n/2- Ve 2G+m) +O(e), n=1, | )

31/2— ey + O(¥?), n=2,3,4....

From (3.5.3), we obtain the critical bias current for the @ince of static semifluxon,
ie.

Yor = 1 — e + O(€2). (3.5.4)

Proof. The existence proof follows from the implicit function threm as givenin [21]
Theorem 2.1 or [22] Lemma 2.2.

To determine the critical bias current for the existence sfadic lattice semifluxon,
note thatpl(n; a; 1 — €y) must be real. Up t@)(e), from (3.5.3) there is a restriction
for the value ofy for ¢1(n; a; 1 - €y) to be real, i.e. for the sita = 0 wherey < r.
Because the other sites have no such a restriction, it carobauded thaty,, =
1—en+ O(€2). O

From the uncoupled solution (3.5.1), we can see that thakesslution for (3.2.3) that
represents a semifluxon sitting on a sitéfatient from the case of kinks in the ordinary
sine-Gordon equation [23]. Az2kink sitting between two consecutive lattices means
that in the uncoupled system, the sites where 0 and those wherg = 2r are
separated by a site whepe= 7. For a semifluxon, there is no such a configuration as
there is no value ap between 0 and that satisfies the uncoupled discrete sine-Gordon
equation.
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3 Stability analysis of solitary waves in a 0-x Josephson junction

Remark 5.6. In the ordinary discrete sine-Gordon equation, there isradydor a
kink to move in space, the so-called Peierls-Nabarro bd2]le The barrier is defined
as the energy dtierence between a kink sitting on a site and a kink sitting betw
two consecutive sites. This barrier exists becaus&iks have space translational
invariance, while there is no such property for a semifluxdherefore for a lattice
semifluxon the barrier with the above definitionlikely exists, contrary to what was
suggested earlier in [9].

The spectral stability o' (n; a; y) is obtained by substituting, = ¢' (n; &; y) + v,e't
to the model equation (3.2.3). Disregarding the higheroietens gives the following
eigenvalue problem

L'(a;y)v = A, (3.5.5)

wherey = (..., V_1,Vo,V1,...)" andLi(a; y) is a linear discrete operator

0
1 J, 1
U@y = 131
131

0

J, = —2-a’cos(gl(may) +6n), nez

that corresponds to the continuous operaft; y). This is an infinite dimensional
matrix problem which is real and symmetric. Thus, the eigéues must be real.

In the discrete case, the continuous spectrum of semikinknite. The spectrum is
obtained by substituting, = %@ to Eq. (3.5.5) withJ, = -2 — a®+/1 -2 from
which one obtains the following dispersion relation forislinear waves

4 ka
- _ — A2 i —
A= (,/1 Y+ siré( 5 )). (3.5.6)
Hence, we get that the continuous spectraimanges in the intervaki[v/1 — y2,

JVI= 2+ 4/a2).

Lemma 3.13. Lete = 1/a%. Giveny = €Y, for e small enough, the largest eigenvalue
of the operator E(a; ) is strictly negative up t@(e?).

Proof. The eigenvalue problem to calculate the stability of the atonically increas-
ing series representingmakink ¢1(n; o0;y), n € Z is given by (see (3.5.5)):

LY(a;y)v = Av, (3.5.7)

withv =(...,v_1,Vo,V1,...).
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3.5 Semikinks in the weak-coupling limit

The spatially decaying solution that corresponds to thgelstreigenvalue of the above
eigenvalue problem, following Baesens, Kim, and MacKay] &h be approximated

by
ct™M n<0,
Vp = (3.5.8)
c1n>1,

for somec and|¢| < 1. Considering the type 1 semifluxon that is given by (3.5Hi3,
Ansatz is a solution of the eigenvalue problem (3.5.7) umptbiacludingO(e).

For small nonzere, if we can match exponentially decaying solutions (3.5r8poth
sides from either end of the lattice to a central site, thermkitain a candidate for an
eigenfunction. Fon| — o, Eg. (3.5.7) will determine the decay exponérite.

A= —+l1- €272 + (- 2+ 1/0). (3.5.9)

The matching condition at the central sites 0, 1 is given by the relation:
A = —cos(e(m + %)) + (-1 + ¢). (3.5.10)

Combining (3.5.9) and (3.5.10) leads to the eigenvaleend the decay exponefiais
a function ofe andy; i.e.

¢ = 1+ %(;2 — (m+7)%)e + O(€%), (3.5.11)
A = -1+ %;262 +O(e%). (3.5.12)
[m]

Remark 5.7. One can show that a semikink of type 1 in the weak-couplin@ cas
has only one eigenvalue by proving that there is no antisytmensgolution to the
eigenvalue problem. This is according to Atkinson’s theof25] which is the discrete
version of the Sturm-Liouville theorem. According to [24h) approximation to the
eigenfunction that corresponds to the next largest eideeaan be given by

¢t n<0,
Vn =
-t n>1

When the applied bias currepts close toy.(a), we have the following stability result
of a type 1 lattice semifluxon.

Lemma 3.14. Lete = 1/a%>. Giveny = 1- ¢y, for 0 < 3y — 7 < 1, the largest
eigenvalue of the operatori(a; y) is strictly negative up ta(e). Fory = x, the
operator L}(a; 1 - €y) has0 + O(e) as its largest eigenvalue.
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3 Stability analysis of solitary waves in a 0-x Josephson junction

Proof. In the proof of Lemma 3.13, we take a symmetric approximatiiotihe spa-
tially decaying solution of the eigenvalue problem (3.5.he fact that the ansatz is
symmetric is because the type 1 lattice solugidn; co; y) is symmetric up ta(e?)
for smally.

Since for largey, ¢1(n; oo;y) is asymmetric up t@(e) (see (3.5.3)), it is natural to
expect that our approximate function to the solution of (B.5hould also be asym-
metric. Therefore, as an Ansatz, we take

™", n<O,
Vh = (3.5.13)
szn—l’ n>1,

for somec; andc; and|¢| < 1. This is a solution of the eigenvalue problem (3.5.7) up
to and includingd(Ve).

Doing the same steps as in the proof of Lemma 3.13, the eigenpeoblem (3.5.7)
gives the following equations

e(1/€ -2+ €) — A —sin(+/eZy) = 0, (3.5.14)
e(c — 2¢c1 + ) — Acy — sin(+/2e(y — n1))c1 = O, (3.5.15)
€(cy — 2¢; + Cof) — AC, — sin(~/2e(y + m))c, = 0. (3.5.16)
Equation (3.5.15) gives
€Co

c1= .
' A+ V2ery = —€(t-2)
Subsequently, from (3.5.14) and (3.5.16) we obtain

(Vr+ VY -m)(3V2-4)
2(-1+ V2)2r

£ = Ki(7) Ve + O(e) = +0(y-m|+ve, (3.5.17)

A:Qmﬁ4aaz—ﬁ@1%%ihm¢m)%,waw)
4-3+2

1414277

with K(r) = 0.

Numerical computations of the discrete system

To accompany our analytical results, we have used numerédalilations. For
that purpose, we have made a continuation program basedwtoiNéeration tech-
nigue to obtain the stationary kink equilibria of Egs. (3)2and (3.2.4) and an eigen-
value problem solver in MATLAB. To start the iteration, ongncchoose either the
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3.6 Numerical computations of the discrete system

35

Figure 3.6: Two lattice semifluxons of type 1 are plotted as a functionhaf lattice index,
namely the kink for a very weakly discrete ari@y 0.1 (-« —), i.e. close to Eq. (3.3.6) and the
kink for a very strongly discrete array= 2 (—o-).

continuum solutions discussed in the previous sectioraaetthe equilibria from the
uncoupled limita — o. We use the number of computational sitdé 2 800 for
parameter values @ = 0.05 or larger.

Stability of type 1 lattice soliton

The type 1 lattice semifluxonl(n; a;y), n € Z admitted by the system for two
different values of discreteness paramatsrpresented in Fig. 3.6. For a given value
of a, one can use as the initial guess either a solution from théramus limit (3.3.6)
or from the uncoupled limit that has been discussed in thegading sections.

In Fig. 3.7 we present the numerically calculated spectrypé 1 semifluxon as a
function of the discreteness parameter. The approximatgifin (3.4.11) foia small

and the one fom large derived in Lemma.33 are in a good agreement with the
numerically obtained largest eigenvalue. Any eigenvaleiew A = —1 belongs to

the continuous spectrum. Farclose to zero we do not see dense spectra because of
the number of sites we used. By increasing the sites-numébavillvobtain a denser
spectrum.

There is only one eigenvalue outside the phonon bands whighagreement with
our theoretical prediction given in Remark 5.7. This is imirast to the case of an
ordinary lattice z-kink [26, 27] where there is an internal mode bifurcatingnfrthe
essential spectrum when the paramatercreases.

When a bias current is applied, it has been shown that thexeiigical bias current
for the existence of a static type 1 lattice semifluxon. Theexically calculated,
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Figure 3.7: (upper) Numerically computed point spectrum of a latticeiglexon againsts the
discreteness parameter with= 0. We used the number of sit@sl = 300. We zoom in the
plot of spectra around -1 for clarity. The bold-solid-lireethe calculated approximate function
for the point spectrum using perturbation theory. (lowedngBigenfunction (localized mode)
of the point spectrum faa = 1.5.

of the real discrete system (3.2.3) as a functioraa$ presented in Fig. 3.8. The
approximate functions for smaidl(3.4.7) and larga (3.5.4) calculated in the previous
sections are presented as dashed lines.

Our numerical computation shows that the valug above which static lattice semi-
fluxons disappear is also the valueycdt which the largest eigenvalue is zero.
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3.6 Numerical computations of the discrete system

no static semifluxons

Figure 3.8: The critical bias current of a stabtekink as a function of the discreteness parameter
a. Fory above the critical current there is no statikink solution. The solid line is numerically
obtained curve. Dashed lines are calculated from the caseof and from the weak-coupling
casea > 1. For a clear explanation on the derivation of the curves lse¢eixt.

0.4

Figure 3.9: Plot of the eigenvalues of ar-kink as a function of the discreteness parameter
a. We zoom in the almost continuous regian< 1 where it shows that discreteness even
destabilizes the kink. The dashed line depicts our analyyicomputed approximation to the
largest eigenvalue of the kin(3.4.12)

Instability of type 2 lattice soliton

First, the stability of a 8-kink which is the limiting solution of lattice type 2
semifluxons whery — 0, i.e.$2(n; oo; 0), will be studied numerically.
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3 Stability analysis of solitary waves in a 0-x Josephson junction

In the previous section on weak coupling limit, type 2 latgemifluxons were not
considered becaugg(n; «;y) was not known in that limit. Using our continuation
program, we have followed ar&ink solution from the continuous limit & a < 1
up to the uncoupled situatian= co. We obtain thap2(n; co; 0) is given by

0, n=-1,-2
2 > n= 07
¢z(n; 00; 0) = (3.6.1)
n, n=1
3r, n=23,....

Note that this stable configuration is not monotonically@asing.

In Fig. 3.9, we present the numerically obtained eigenwabfea 3r-kink as a func-
tion of the discreteness. For smallthe largest eigenvalue is indeed increasing as is
predicted by the perturbation theory (3.4.12). As soon adglibcreteness is of order
one, the largest eigenvalue decreases and becomes zep@tiamatelya = 1.7521.

Interestingly, whery # O discreteness cannot stabilize a type 2 semikink, contoary
the case ofy = 0. In Fig. 3.10, we show plot of type 2 semikinks as well asrthei
largest eigenvalue as a function of= 1/a? for two particular values of, namely

v = 0.01 andy = 0.1. The scaling in the horizontal axis is made in that way bseau
an eigenvalue can have a peculiar behavior when the systeeaidy coupled.

It is important to notice from Fig. 3.10 that the solutiong anstable even in the
weak-coupling limit. It is interesting because this alwaystable type 2 semikink is
a concatenation of an3kink and a—2xz-kink, while a 3r-kink has been shown to be
stable in the uncoupled limit. A2x-kink itself can also be stable in that limit.

This instability issue can be explained by looking at thelfagression of a type 2
semikink when it is uncoupled. For the two particular cheiogy above, it is given

by

0, n=-1-2
n, n=0,1,

¢23(n;00;0.01)=1 37, n=2,....8, (3.6.2)
2r, n=9,
n, n=1011...,

and

0, n=-1,-2
7, n=0,1,

¢2(M;00;0.1)=4 31, n=2,...,6 (3.6.3)
2r, n=17,
n, n=8,9,....
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3.6 Numerical computations of the discrete system
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Figure 3.10: ((a) Plot of a type 2 semikink witp = 0.01 for two different values of, i.e.e = 100
(- * =) ande = 40 (-o0-). (b) Plot of the largest eigenvalue of a lattice type 2 sémiilas a

function of discreteness parameteMhene = 0, the eigenvalue is = /1 — 2.

We see that there are two sites, ne= 0 andn = 9 fory = 0.01 andn=0andn =7
fory = 0.1, whereg takes the 'wrong’ value, that is of an unstable fixed pointhef t
mapping¢ — —sing. Looking only at sites numbered= 2 ton — oo, ¢2(n; 00; y)
can be viewed as a2 lattice kink sitting on a site which is known to be unstable.
If we look only at sites numbered = 1 ton — —oo, ¢2(n; 00;y) can be seen as a
deformed # lattice kink. Hence, it can be concluded that coupling betwthe two
kinks due to the presence of a nonzerlis responsible for the instability.
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3.7

3 Stability analysis of solitary waves in a 0-x Josephson junction

Concerning the applied bias current, it has been discusgbe previous sections that
there is a critical current* for the existence of a type 2 lattice semikink. Neverthe-
less, we did not calculatg(a) of the real discrete system (3.2.3) because it has less
physical interest ag2(n; oo; y) is always unstable.

Instability of type 3 lattice solution

In this subsection, we will consider lattice semikinks abey3, 43(n; a; y), that
has been shown in Lemma 3.5 to be unstable in the continuasi®me

The largest eigenvalue of a lattice type 3 semifluxon fordlpr@rticular values of, i.e.

v = 0.01, 0.1, 0.55, is presented in Fig. 3.11. Even though a semifluxon oftyipie

is a concatenation of arink and a—r-kink that can be stable in the discrete case, it
is unstable as a whole from the continuous limit all the wath®very discrete case.
The explanation is similar to the case of a lattice type 2 karkidiscussed above.

For the three particular choicesphibove p3(n; ; y) is given by

0, n=-1-2
3 n, h=-6,
$5(n; 00;0.01)= (3.6.4)
2r, n=-5,...,0,
n, n=12...,
0, n=-1-2
3 T, nN=-2,
¢-(N; 0;0.1) = (3.6.5)
27, n=-1,0,
n, n=12,...,
and
3 0, n=-1-2,...
#-(n; 00; 0.55) = (3.6.6)
m, n=0,12....

One interesting point to note for a type 3 lattice semikinthist the number of sites
with value 2r is decreasing ag increases. Starting from the continuous version of a
type 3 lattice semikink as the initial guess for the conttiaraprogram, it disappears
fory > v*(a) (see (3.4.6)). Its final configuration is similar to the $tabkink (3.5.1),

but translated by one site.

Conclusions

To conclude, we have done stability analysis for three tygfdattice m-kink of
the discrete Or sine-Gordon equation numerically and analytically. Atiabi calcu-
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Figure 3.11: The same as Fig. 3.11 but for type 3 semikink. We zoom in themneghere the

largest eigenvalues oscillate.

lations have been done in the continuum limit, i.e. the¥ine-Gordon equation, and
the weak-coupling case. It has been shown that in the canis0s sine-Gordon
equation,r-kinks of type 1 are stable and the other types are unstablehe dis-
crete case, we have computed the spectrum ofrtkieks and obtained the curve of
the eigenvalues as a function of the discreteness parametapproximate function
to the curves has been derived. FormaKik, we have shown that relatively small

discreteness even destabilizesrakink.
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3 Stability analysis of solitary waves in a 0-x Josephson junction

For future research, it is of interest to see what happertst@sblated eigenvalues of
a latticer- and 3r-kink if we, e.qg., replace the potential with the Peyrard¥i®éssenet
(PR) potential [29]. Using PR potential, one might expech&wve many isolated
eigenvalues and the bifurcation of high-frequency intemmades from the continuous
spectrum [30]. The nucleation of kinks and antikinks whenapply a constant force
above the critical value is also interesting for furtherd#s. One question that can
be addressed is the frequency of the nucleation as a funatithe applied constant
force in the presence of a damping fit@ent (thex-term). Note also that even though
type 3 semifluxons are unstable, but the largest eigenvaldiese to zero. In fact, a
type 3 semifluxon consists of a fluxon and a semifluxon with thosite polarity. In
experiments, the presence of a fluxon near by a semifluxonnflremnce a junction
measurement [31]. Because a fluxon can be pinned by a defeohfL.can expect to
have a stable type 3 semifluxon when there is a defect prastr system.
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Stability analysis of solitary waves in a tricrystal

junction






4.1

Chapter 4

We consider a tricrystal junction, i.e. a system of thregyldnosephson junc-
tions coupled at a common end point. The system admitsrsolives sitting
at or near the common point. Especially when one of the jonstis an-
junction, there is a solitary wave created at the common fpolilme stability
and the dynamics of all existing solitary waves of the tim#ependent system
are studied analytically and numerically. The present gtisdof interest also
for experimentalists since the system is a base for a netafortansmission
lines.

Introduction

An attractive application of Josephson junctions is thppleability for logic de-
vices based on the Josephsdireet for high-performance computers [1, 2]. Employ-
ing flux quanta as information bits, the method is based onipndating the prop-
erties, e.g. the stability, of fluxons. Nakajima, Onoderd @gawa [3] proposed a
network of Josephson junctions that is made by severaliumetonnected at a point.
Following Nakajima et al., we also call this common pdhme turning pointwhich is
denoted by the point 0 in Fig. 4.1. The circuits allow one tatool the behavior of
Josephson vortices to achieve a complete logic capalilitg,[4]. One of the circuits
is named STP (selective turning point) where a moving intéggon can be trapped
at the turning point.

Later, it is discussed in [6, 7] that the STP equation can leel &3 describe an edge
dislocation formed by an incomplete copper-oxide layee 3ituation can be realized
during the preparation of a stacked system. The authors graiva trapped vortex at
the turning point executes harmonic oscillations arouedsttpuilibrium position.

Recently, Kogan, Clem and Kirtley [5] considered Josephamntices at tricrystal
boundaries. This tricrystal problem is also described leyghme equations as the
above mentioned STP circuit. In [5], the presence of a hak-fuantumbg/2 vortex

is discussed when one of the three Josephson junctionz-iaction. They also
consider the existence of vortices with multiple half-flggantum &,/2 and 5by/2.

Here, we will calculate analytically the stability of saliy waves admitted by a tricrys-
tal junction. Knowing the eigenvalues of a state can be ofortgmce from an appli-
cation point of view. In the time-independent case, a statiitary wave of a tricrystal
junction can be sitting at or near the turning point depegdin the combination of
the Josephson lengths. We will consider a general case Wbelosephson lengths of
the junctionsiy’s are not the same.
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4.2

4 Stability analysis of solitary waves in a tricrystal junction

The present chapter is organized in the following way. Inti8act.2 we will recall
the governing equations as derived in [3, 4, 5]. In Secti@wk discuss the stability
of integer fluxons sitting at or near the common point. Thidisae consists of two
parts, respectively discussing one and two vortices gititror near the common point.
The case when one junction istgunction is discussed in Section 4.4. We give the
conclusion in Section 4.5.

Mathematical Model

% (b)

Figure 4.1: A sketch of two possible field distributions of a static solitary wave in the tricrystal
junction. If the maximum field is not at the intersection gpthen we say that the solitary wave
is sitting outside the intersection (a). In (b), the maximofi, is achieved at the common point.

The phase dierence along the junctions is described by the followingusbed sine-
Gordon equation [3, 4]

A= e = sin[p' () + €], (4.2.1)
withi=1,2,3, x>0, t > 0. The position of the common end point is therxat 0.
The parametet; denotes the Josephson length ofitingunction. The subscripl of
the Josephson length is omitted for brevity. The indeximbers the junction. The

constant parameteéf represents the type of thi junction, i.e.¢' equals 0 orr. The
boundary conditions at the intersectivi: 0 are

¢t + 2+ ¢° =0,
¢l =2 = g2 @22

The first equation is given by the condition that the magrfeticthrough an infinites-
imally small contour is zero. The second equations desdlibecontinuity of the
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4.3 Conventional tricrystal junctions

Figure 4.2: The evolution of a fluxon moving with velocity 0.5 towaxd= 0 that is trapped at
the turning point. The plot is made in terms of the magnetid fi. In the figure, to the left and
to the right ofx = 0 is junction 1 and 2, respectively. Whag = 13, ¢*> = ¢°. The parameter
values we take argé, = 1, = 3. The scattered-waves can be seen as well.

magnetic fields. One reaches the same value of the field atitfia no matter along
which of the junctions the origin is approached.

The total energy that corresponds to Eq. (4.2.1) is giverbby [
H= Z fo % (Aiqs;)z +cosg') (1 - cosg') dx (4.2.3)
i

We consider the time-independent solution of Eq. (4.2.1)e €quation can admit
static localized solutions, two of which are sketched in. Big.. The magnetic field
configuration of each state is determined by the Josephsgihie of the junctions.
Here, we will calculate analytically the linear stabilitfthose static solutions.

Conventional tricrystal junctions

The first case that we will consider is a conventional trita/ginction which is
represented by’ = 0 for alli in (4.2.1). A fluxon moving in a conventional tricrystal
junction toward the common point can be either trapped,atfttor pass through the
point. This is the basic operation of a tricrystal junctianaalogic gate proposed in
[2]. In Fig. 4.2, we show the evolution of a fluxon that is tregpoy the common
point. In this case, the common point acts as a potential vi@tie can see that the
trapped fluxon oscillates about the common point. The @digh frequency for the
case ofl; = A, = A3 has been calculated in [7].
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4 Stability analysis of solitary waves in a tricrystal junction

(b)

Figure 4.3: The same as Fig. 4.2, but in the reflection (a) and the trasgmnigb) case. The
parameter values we take are {fa= 1 andi, = 13 = 0.4; and (b)A1, = 1, 1, = 2 andAz = 0.5.
The reflection and the transmission o®akink can be caused by either the instability of a
time-independerr kink solution admitted by (4.2.1) at the same parameteraegar by the
non-existence of such static solitary waves.
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4.3 Conventional tricrystal junctions

When the Josephson penetration deptbof the junctions diers from each other, an
incoming fluxon can either pass or be reflected by the commaont.pexamples of

such evolutions are shown in Fig. 4.3. It is then of interedtrtow which combina-

tions of Josephson lengths correspond to transmissiorctiefh, and trapping of an
incident fluxon.

To proceed, we will assume that the incoming fluxon moves withinfinitesimal
velocity. In this case we only need to consider the existemzkthe linear stability
of a time-independent solitary wave admitted by equatioB.{4. If a static solitary
wave is stable, then it is an indication that an incident fluxall be trapped by the
common point.
A static solution of Eq. (4.2.1) representingzafhuxon sitting at or near the common
point is given by [5]

g% = Atart e/t

¢S - 4tan—l e(X—Xz)//lz — 27-[’ (431)

g2 = Atarrt X/t _ o,

where thex; are determined by (4.2.2). For simplicity we scale the Josep lengths
to Y 4 = 1, so that we have only two free parameters, elg.and A3, and1; =
1 - 22 — 23. The domain of the Josephson parameter is then bounded bindise
A =0,43=0,and1, + 13 = 1.

Expression (4.3.1) does indeed represent-&i@k because the total Josephson phase
is 2r when one circles the common point at large distancesy}. @ (c0) = 2r.

First we will derive howx;, i = 1,2,3, from Eq. (4.2.1) depend of, andAz. The
procedure we will present below is a summary of the stepadivés].

Substituting (4.3.1) into the boundary conditions (4.3i2gs the following equations

Y21 = Sin 2wz, yan = Sin 23,

(4.3.2)
a3 =71 — a1 — @,
where
Yi = A/,
1 = sin 2oy, (4.3.3)

a; = tamle /4
After some algebraic calculations, the last equation &.2 gives the following equa-

tion forn
yan = n+1— (yam)? +yan1-n2 (4.3.4)

This equation has a positive rook0n < 1 that is given by

\/—1 +2(y5+ Y5 +V5Y3) Vs V4
n= .

(4.3.5)
2y2y3
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4 Stability analysis of solitary waves in a tricrystal junction

The above; is real provided positive expression in the square root. Whis not a
real number, the same is true fais. Hence, there is no static solution representing
a fluxon sitting at or near the common point. In this case, aidént fluxon can be
either transmitted or reflected as shown in Fig. 4.3.

Once we know the value of for given values ofl, andAs, we can calculate; from
vin = sin 2 = 1/ cosh/4), i.e.

1+ \/1-y2?
X/ — .

Yin

(4.3.6)

The '+’ sign corresponds tg < 0 andx; > 0, respectively. Solutions that satisfy the
governing equations have certain combinations of the sing. If one of thex’s

is positive, then the configuration of the magnetic field wél as Fig. 4.1(a), i.e. the
fluxon is sitting outside the common point.

After obtaining the value of;’s for given;’s, we can proceed with the stability anal-
ysis of the static solitary wave. First, we linearize abdwet SO|Uti0n¢i(). We write
¢'(x.1) = ¢y + U'(x,t) and substitute the spectral ansatz e“'v(x). Retaining the
terms linear in' gives the following eigenvalue problem

Py — (w? + cosy + 6V =0, (4.3.7)

with boundary conditions at = 0 given by

Vi+Vv 4+ =0,
(4.3.8)
A==

The spectruna consists of the continuous spectrum and the point specisgiated
eigenvalues). The continuous spectrum is given by the$er which there exist a
solution to

A, - {a)2 + lim cosph(x) + ei]}\/' 0,

i.e.
PV — (@ +1V =0 (4.3.9)
of the formvi = &/ with « real.

w=x+—(1+«3). (4.3.10)

This relation is the usual dispersion relation of a lineavevian a sine-Gordon equa-
tion. This relation yields a semi-infinite continuous spet on the imaginary axis.

It follows that

The above stability analysis shows that solution (4.3.1) lba stable. We cannot
conclude whether the solution is linearly stable or not leeémalyzing the point spec-
trum.

Our next task is to find the point spectrusrand the corresponding eigenfunctivin
The point spectrum consists of those valueudor which there exist solutiong to
(4.3.7) and (4.3.8) that converge to Oxat co.
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0.5p
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0.051

Figure 4.4: The smallest spectral parametdor a standin@r-fluxon. There is an empty region
with no contour lines below the parameter domain boundanry A3 = 1/2. In this region there
is no standing fluxon. In the existence region, there is atsastability region indicated by the
valueu < -1.

The eigenfunction' that corresponds to the eigenvatués of the form [8, 9]

X=X —,u),,u2 Wil (4.3.11)

V(X = e T (tanh

where Ref) < 0 andc; needs to be determined from (4.3.8).

To obtain an expression for the eigenvalues of the fluxoe $taithe general case, we
have to find the zero’s of a fifth order polynomial with ¢éeents depending on;,
i =1,2, 3. We derive the form of this polynomial in the Appendix.

When all the Josephson lengths are the same,xthen-1;In v3,i = 1,2, 3. In this
special case, the roots of the polynomial are
11+ V13
=% "4
The last two roots have multiplicity two. The eigenvaluehisrt obtained by recalling
that Reft) < 0 andu? = w? + 1 from which we obtain

w = +i \/Ls‘/ﬁ, (4.3.12)

which is in agreement with [6].
The spectral parametgrfor the general case at and Az is shown in Fig. 4.4.

It is interesting to note that our parameter domain is bodrethe lined, + A3 = 1.
Yet, there is a region in that parameter domain where theessjiyn within the square
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4 Stability analysis of solitary waves in a tricrystal junction

root of (4.3.5) has negative values, which means that tisene istatic solitary wave
satisfying Eg. (4.2.1) and (4.2.2). In Fig. 4.4, this regi®shown as an empty space.
This existence region is bounded by links= 1/2, 13 = 1/2, andA; + 13 = 1/2.
There is also an instability region in the existence domtaat torresponds o < —1.

In the region, the magnetic field configuration is as Fig.a&).1(

Whether there is a static standing fluxon, but unstable,eretls no static fluxon for
a given combination of parameter values, a fluxon moving tdwlae common point
in a tricrystal junction with those parameter values wilt be trapped.

0.5r=

0.4r

0.3r

0.2r

0.1r

Figure 4.5: The smallest spectral parametefor a standingiz-fluxon. It is clear that in all the
existence region the state is unstable. It means that thewxe possibility to trap two fluxons at
the common point.

Next we will consider the linear stability of two fluxons 8it) at or near the common
point. If we can find a combination of Josephson lengths thatsga stable A-kink,
then two incident fluxons in a tricrystal junction can be prag by the common point.
The stability calculation can be done as before. A solutiath torresponds to a static
4n-kink state is given by

gL = dtarrl e/,
(l% — 4tarr! e(X—Xz)//lz’ (4313)
¢3 = Atarr X _ o
The spectrum parameterof a 4r-state in the {, A3)-plane is shown in Fig 4.5. This
state has the same existence domain as-at&e. Since the largest eigenvalue is

always positive in the existence region, then two fluxonsrearer be trapped at the
same time by the common point.

For three standing fluxons, we find that there is no statictiemluepresenting such a
state.
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4.4 Tricrystal junctions with a »junction

A N Sy B 90 K 85K 80K

75K 70K 60K

Figure 4.6: (A) Tricrystal experimental geometry of a YBCO film grown otrigrystal SrTiG
substrate used in [10]. The crystalline orientations ofttfezystal were chosen such that the
system is frustated. (B) Scanning SQUID microscope imadeBeor-fluxon in the film for
various ambient temperature (Josephson leagthThis picture is courtesy of J. R. Kirtley.

Tricrystal junctions with a  z-junction

In the next problem we address, one of the junctionsriguanction. This problem
appears in superconducting tricrystals wdttvave symmetry [11]. Josephson bound-
aries between anisotropic superconductors withdtdweave symmetry is sensitive to
crystalline misorientation. In a particular case, the ptdiference can have a phase
addition ofr.

In the presence of a phase-jumprah the phase dierence of one junction, the spon-
taneously generatedkink is the ground state of the system [5]. Therefore, trespr
ence of ar-kink is used to probe the unconventional symmetry of theoparameter
in novel superconductors[12, 13]. Only recently it is prepadto use half-flux quanta,
but in a diferent system, in superconducting memory devices [14]. We sh Fig.
4.6 a scanning SQUID microscope image af-fuxon in a tricrystal junction.

The problem is described by takify = 7 and6>® = 0 in Eq. (4.2.1). A static solution
representing a-kink, which is the ground state of the system, is given as

gL = atart o/t _ g
¢ = Atamt e/t — o, (4.4.1)
o3 = dtarrt X/ _ 2,

Like before, we need to determing i = 1,2, 3 by requiring (4.4.1) to satisfy the
boundary conditions (4.2.2). Definingas in (4.3.2) and (4.3.3), we arrive at the
following equation [5]

V=~ B2 - don? = dan. (4.4.2)
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4 Stability analysis of solitary waves in a tricrystal junction
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Figure 4.7: The smallest spectral parametefor a n-fluxon. It is clear that in all regions the
state is stable. The region above the lige- 13 = 1 is not a physical region since in this region
A1 < 0 due to our scaling, 4 = 1.

In a special case when alj = 1/3, we obtainx = 4; In(2 — V3) < 0. In this case the
parametep [see (4.3.11)] is given by

V3- V7

4
from which we obtain the following eigenvalues

~ +0.9474. (4.4.3)

3+ V21
w=ti——
8
These eigenvalues have double multiplicity. For the gdroase, the parametarin
the (12, 43)-plane is shown in Fig. 4.7. It is not surprising that theseamce and the
stability region of ar-fluxon are the same as the parameter domain. It is because a
n-fluxon is the ground state of the system.

Kogan, Clem and Kirtley [5] also consider the presence of{2)x-fluxon in system
(4.2.1) withn = 1, 2. This state is rather interesting since for some comhinatbf the
Josephson lengths, a-3luxon has a lower energy than a combination afduxon at
the common point and ar2fluxon at infinity [5]. From this energetical reasoning, it
was stated that there might be a stabieflBxon in a tricrystal junction. Yet, we found
that a 3r-fluxon is unstable. Only with some combinations that arehysjcal we can
have a &-state with the largest eigenvalue zero.

It has been shown by Kogan et al. [5] that there are two passitahfigurations rep-
resenting a 38-fluxon, i.e. configuration with one+” and two '+'s in the sign-set
(sign(xy),sign(xz),sign(xs)). For given values oftj, a solution with two+'s has a
higher energy than its corresponding solution with eneln Fig. 4.8(a), we show
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Figure 4.8: (a) The sign-set diagrafsign(xi1), signxz), signxs)) for a 3rx-fluxon. This picture
corresponds to Fig. 4 in [5]. (b-c) Similar pictures as Figl #or a3n-fluxon with (b) one
positive x; and (c) two positives’s. From the picture we know that zero can be the largest
eigenvalue of 8r-kink, i.e.u = —1, but only at unphysical combinations of Josephson lengths,
e.g. when; is exactlyl/3.
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4 Stability analysis of solitary waves in a tricrystal junction

Figure 4.9: The same picture as Fig. 4.7 but fobafluxon. Because the smallgsts always
less than -1 for any combinations of Josephson lengths tlteza is no stablBr-kink.

the sign-set diagram showing combinations of signs;dhat are needed for a so-
lution to satisfy the governing equations.The paramgtéor this state is shown in
Fig. 4.8(b,c). In the evolution of this state in time, &fuxon will dissolve into ar-
and a Z-fluxon.

We have also considered the existence and the stability tatia &r-fluxon which is
represented by

¢ = 4tam(exa/h) — g,
$2 = Ataml(ex)/12), (4.4.4)
$3 = Atarri(ex /),

We find that it is even more unstable thanafRixon. The parameter is shown in
Fig. 4.9.

A static Zr-fluxon does not exist in a tricrystal junction with a singlarm.

Using the same analysis, one can show that thet&8te can be stable in a tetracrys-
tal junction with oner-arm. Experimental reports of these tetracrystals canéntire
[11]. An experimental scanning SQUID microscope imagesefiaxon in a tetracrys-
tal junction is shown in Fig. 4.10. One can also calculate the 5r state will be
linearly stable in pentacrystals with onearm. Therefrom we conjecture that a stable
(2n+ 1) state exists in 2(+ 1) or more junctions connected to a joint with one of the
arms is ar-junction. All the stable states require the maximum fielthécat the joint
(see Fig. 4.1(b)).
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Figure 4.10: A scanning SQUID microscope image afdluxon in a ThBaCuGs,; film grown
on a tetracrystal SrTiQsubstrate. This picture is courtesy of J. R. Kirtley.

Conclusions

To summarize, we have discussed the existence and thebiti}gtof all possible
states in a tricrystal junction. The stability analysisgeneted here should be applica-
ble to other Josephson junction systems. We also have pedditat a multicrystal
junction with 26 + 1) or more arms with one of the arms igrgunction can have a
stable (& + 1)®p/2 vortex. This stability analysis is important for experimed in-
vestigations of the order parameter symmetry in novel sigretuctors. Such systems
can also be used in high-performance computers.

Appendix: Polynomial equation of the spectral parameter u

The parameteg that gives eigenvalues of a static kink is obtained by reqgir
(4.3.11) to solve (4.3.8). The unknown constantannot be zero for allasv' # 0.
To get rid of the trivial solution, we set, for instance,= 1.

From equationsf + ;> + V3)|x=0 = 0 and {1 — »)|x=0 = O (see (4.3.8)), we obtain that

¢ 1" (—utanh %) — p? + sechi(3L))
C =

e ¥ (~utanh(?) - 2 + seci(%))
~Tu X ~2u %
e u¥ (tanh@) + u) + coe” =" (tanh@g) + )
C3 = -— X .
e‘ﬁ”(+ tanh ;—2) + 1)

The last equation of (4.3.8¥{ — v3)|x=0 = 0 will then give the following fifth order
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4 Stability analysis of solitary waves in a tricrystal junction

polynomial equation of the paramejeri.e.
> A
i=0

with

As = 3cosh@l)?cosh(?)? cosh@?)?,

Ay = 3cosh@!)cosh@?)cosh@? )(coshG ) sinh(2) cosh@?)
cosh(; ) sinh(32 )cosh(; ) + sinh (3 )cosh(; )cosh(j )),

As = -2coshf)?cosh(?)’+
3sinh@?) sinh(32) coshg!)* cosh@?) cosh(g +
3sinh() sinh() cosh@?) cosh(?) cosh¢? )2+
3sinh X3)smh( 1) cosh@t) cosh(? )? coshq )—
2 cosh§2)? cosh@)? — 2 cosh@t)? cosh(?)?,

A, = 3sinh@)sinh() sinh@) cosh@) cosh¢?) coshg?)-
2sinh(?) cosh@)2 cosh() - 2sinh(it) cosh{ ) cosh¢? )2—
2 sinh x3) cosh@)? coshq ) — 2sinh(}) cosh@? )coshq )2—
2sinh@) coshgt) cosh@?)? — 2 sinh(@2) coshg )> cosh@?),

Ai = cosh@l)®+cosh?)? + cosh@?)*~

2 sinh Xz)smh( 2) cosh? )cosh(j )—

2sinh@?) sinh(}t) cosh@!) cosh@?)—

2sinh@) sinh@) cosh@?) cosh@?),

sinh( )cosh(j ) + sinh(3 )cosh(j ) + sinh(® )cosh(j ).

+

Ao

Only roots of the polynomial with negative real part corr@sg to an eigenvalue of
the considered state.
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Chapter 5

We consider a modified sine-Gordon equation with phasesshft the point
of the shifts, fractional kinks can be created. In the paittic case of periodic
phase shifts, there is a chain of fractional kinks. Here, meoduce and study
numerically fractional kink lattices and their energy band\nalytical calcu-
lations are presented for the particular case of chains aéger (anti)kinks
and kinks-antikinks in the absence of an applied bias curr&mowledge of
band-structure is important for the design of devices thatlzased on frac-
tional vortices. Because such a system can be realized eriexpnts and has
a wide range of controllability properties, we also propasas an artificial
vortex crystal with controllable energy bands.

Introduction

A sine-Gordon equation is known to be an important model wajiplication in
many branches of modern physics, extending from condens¢igémsystems, liquid
crystals, to quantum field theory. For a rather completeere\see [1] and the ref-
erences therein. A crucial property of the equation is itsgrability that permits an
analytic determination of the corresponding physical gjtias. In condensed matter
systems, sine-Gordon equations appear in the theory oflosgphson junction that
describe the tunneling of Cooper pairs across a barrierdstwwo superconductors
[2]. In the study of Josephson junctions, the sine-Gordasplrepresents the phase
difference between two neighboring superconductors and thlafiuental topological
kink solution expresses one magnetic flux quantygm 2.07 x 107> Wh.

Bulaevskii, Kuzii, and Sobyanin [3] proposed a Josephsatesy with a phase-shift
of = in the sine-Gordon phase due to the presence of magneticitiepuThe system
can admit a half of magnetic flux quantum or semifluxon attddbehe point of the
phase jump. Recent technological advances can introdigehhase shift in a long
Josephson junction using, e.g., superconductors withnugeaional pairing symme-
try [4, 5], Superconductor-Ferromagnet-Supercondu&éiS|) 7-junctions [6], and
Superconductor-Normal metal-Superconductor (SNS) janst[7]. A recent work
reports a successful experiment on artificial phase shifosephson junctions made
of standard superconductors [8]. In this experiment, tresplshift can be tuned to be
of any value and, hence, one can obtain an arbitrary fraatimagnetic flux quantum.

Here, we consider a particular case of Josephson junctighgeriodic phase shifts.
We study fractional kink lattices and their energy bands¢barespond to the oscilla-
tions of the chains.
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5 Fractional kink lattices and their bandgap structures

It is of interest to consider and understand such a systemwisedt can be proposed
as an artificial periodic structure. This is due to its greagrée of control over its

electronic properties either at the design time by choosieglistance between vor-
tices or, during experiment, by varying the bias currenhertbpological charge of the
vortices. It can be a useful utility in understanding crigstarhile the study of crystals

is known to be a central theme of solid state physics [9, 1D, 11

Besides the motivation mentioned above, the present studlgd of importance be-
cause knowledge of band structures is a key element in degiglassical and quan-
tum devices based on fractional vortices. In the classicaiain this can help either
to avoid resonance phenomena or even to exploit them (efileirs and detectors).
In the guantum domain, the absence of an acoustic branchecarctucial obstacle
for thermal excitation of plasma oscillations.

This chapter is organized as follows. In Sec. 5.2, we explaitonsidered mathemat-
ical model and the numerics that we use. This section wik gigo an introduction to
the aforementioned arbitrary fractional kinks, beforaHar discussions on fractional
kink lattices. We consider two fundamental arrangementgesiodic phase shifts
that admit two particular solutions existing also in theinagy sine-Gordon equation,
namely rotating and oscillating solutions. We overviewlgtigal results that have
been established for the particular case 2r andy = 0 in Sec. 5.3. Some numerical
results for the general value of phase shifire discussed in Sec. 5.4. Conclusions of
the present study are given in Sec. 5.5.

Mathematical model and numerical methods
Fractional kinks in a junction with a single phase shif t

First, we consider the problem of Josephson junctions witinglex phase shift,
which is usually called as a ©Josephson junction. This is the building block for a
more general description.

The dynamics of the Josephson phaéet) in a O« long junction is described by

Pxx — ¢ = Sin(g + 6(X)) - v, (5.2.1)
with
0, x<0,
o(x) = { (5.2.2)
-k, X>0.

All variables and parameters are in dimensionless form hdvit loss of generality,
we can assume thatO«x < 2x.

The boundary conditions at= 0 are given by the continuity conditions
lim ¢(x) = lim ¢(x),

lim g(x) = lim 6,09,

(5.2.3)
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5.2 Mathematical model and numerical methods

The presence of thisdiscontinuity can result in the formation of a fractionaktex
pinned atx = 0, as is confirmed experimentally and reported in, for instafb, 8].
This spontaneous formation is to compensate-thghase jump. A kink solution of
(5.2.1) and (5.2.2) that represents a fractional vortek wipological charge is given

by

. 4 arctare*™™, x < 0,
¢(¥) = (5.2.4)
Kk — 4 arctare”**, x> 0,
with B
Xo = Intang. (5.2.5)

The kink solution (5.2.4) is stable. The eigenvalue of #qk) can be calculated
analytically*. The eigenvalue problem of the solution is obtained by stultistg the
spectral ansatz = ¢ + €“'¢(x) into Eq. (5.2.1) and linearizing about the solution
¢*(X). We will then obtain

Exx — [COS@K +6) — wz] e=0. (5.2.6)

The solution of the above eigenvalue problem that corredptmthe smallest eigen-
value of¢* is given by

~(y) = @V1-w¥(x+x)) _ _
. :{ e(x)=e ) (tanhg+ xo) - V1-w?), x <0, 52

e(X) =€ (-X), x>0,

with the smallest eigenvalugis

1 K K K
2 e — — — — —
W= 20054 (0054 + ,/4-3cog 4). (5.2.8)

Plot of this eigenvalue as a function ofs shown in Fig. 5.1. For the particular case

of k = &, the eigenvalue of a semifluxondgr) = % \/1+ V5=~ 0.899.

The fact that a stable fractional kink does not move in spackis attached to the
point of the phase shift is shown by its nonzero eigenvalie. §pectral parameter
can be zero if and only i# = 27 because at this value @f we have an ordinary=2
kink that is translational invariant in space.

Fractional kink lattices in a junction with periodic p hase shift

After briefly considering a Josephson junction with a sirghase shift, we con-
sider the problem of Josephson junctions with periodic plsas#t. Here, we consider

1 The procedure of calculating the smallest eigenvalue of the solution can be exactly following the
steps presented in Chapter 3 of this thesis.
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Figure5.1: Plot of the eigenvalue of a singlec-vortex given by Eq. (5.2.8) verskgcontinuous
line] and its approximations far — 0: w(x) ~ 1 - «*/256 [dashed line] and fok — 2r:
w(x) ~ (21 — &) [dotted line].

two basic periodic arrangements that support solutionstiegi up tox = 2r. Those
two arrangements are represented by

—K, —a<x<0,
0, O<Xx<a

0(x) = (5.2.9)
K, a< X< 2a,
2k, 2a< x< 3a,

and
—K, ...,—a<Xx<0a<x<2a,...,
0(x) = (5.2.10)
0, ...,0<x<a 2a<x<3a,...,

wherea is the distance between two consecutive discontinuities.

There are many static solutions of (5.2.1) combined W) defined by either (5.2.9)
or (5.2.10) forx # 0, 27. But in this work, we only consider a particular solution of
the equation that can be continued up te 2r.

For Eq. (5.2.1) withd(x) defined by (5.2.9), we consider a solution representing a
lattice of fractional kinks with uniform topological chaghat is ordered ferromag-
netically. In the time-independent sine-Gordon equatiocgrresponds to a rotating
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solution. While ford(x) given by (5.2.10), the solution we consider is antiferrgmet-
ically ordered fractional kinks that corresponds in theimady sine-Gordon equation
to an oscillating solution.

Considering only those two particular solutions, the twowabperiodic arrangements
of 6(x) with periodic boundary conditions correspond respebtite

0(x) =0, 0<x<a, (5.2.11)

with boundary conditions

lim ¢(x) = & +1lim ¢(x),

(5.2.12)
lim ¢x(X) = lim ¢x(X),
Xx—0 X—a
and
0, O<x<a,
0(x) = (5.2.13)
—K, a< x< 2a,
with boundary conditions
lim X) = lim X),
x—>{0,a-|¢( ) x—>|2a,a+}¢( ) (5214)
Xll{r({]a_, #x(X) = XJ{'EQ(T, x(X).

Note that our infinite domain in the original system becomeigsfiwith lengthL = a

for (5.2.11)-(5.2.12) andtl = 2a for (5.2.13)-(5.2.14). Both systems can be realized
in experiments using an annular Josephson junction witlplequair-injectors as ex-
plainedin [8, 12, 13].

Numerical methods

To calculate numerically the oscillatory energy bands dfair of fractional vor-
tices, we use a transfer matrix approach approximated bitter-forward method
that will be briefly reviewed below. The reader interestethia numerics is referred
to, e.g., [14] for more complex and delicate methods.

Suppose we want to study the band structure of a static solyfi(x) satisfying
Eq. (5.2.1) for a given arrangementdfik) and given values of, a, andy.

Written as a system of first order equations, the eigenvaiolelgm (5.2.6) takes the
form
& = Aé, (5.2.15)

with

€ 0 1
€= and A(X) = ) (5.2.16)
[ x ] { cos[¢’(x) + 69| - w? 0
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As a consequence of the Floguet-Bloch theorem, a periodiitieo of Eq. (5.2.15)
will satisfy

é(x+ L) =Céx),
with C is a constant matrix andis the periodicity of the lattice.

We approximated(x) with a constant matri¥,, given by Eq. (5.2.16) withx = x, =
nAX on intervalAx from x, to X,;1. We use several spatial discretization steps to
compare results obtained from the numerics,Ax= 0.1, 0.05, 0.02. The so-called
principal matrixC is then approximated by the following transfer matrix détzation

N
C= [_[ expAx An), (5.2.17)
n=1

whereN = L/Ax is the number of discretization in the computational domain

The transfer matrixC has two eigenvalues. The product of the eigenvalues satisfie
the relation

N N
Ao = detC = | | detet ™ = [ [ @A) =1,
n=1 n=1

where we have used an identity det[edp){ = exp[Tr(M)] and the fact that T#) = O
(see Eq. (5.2.16)). The spectral parameidies within the energy band if and only
if 112 is a pair of complex-conjugate roots laying on the unit eirici the complex
plane, i.ejis| = |17 = 1.

Analytical calculations for the case of «k=2rand y=0

Before discussing band-gap structures of a periodic swiutiith general value
of x, we will make an overview over band-gap structures of péciedlutions for the
limiting casex = 27 andy = 0 that have been well-established analytically. A rather
complete discussion of the results presented here can bd foy15, 16].

The simplest stable solution of the sine-Gordon equatitrei®ven multiple of. The
band structure of this constant background consists oftadden band that ranges in
the region 0< w? < 1 and an allowed ban@d? > 1. A 2r-kink solution (5.2.4)
also has the same band structure but with an isolated eilyesvatw? = 0 and
w? = 1. When we have an infinite array of periodie-Rinks supported by the time-
independent equation of (5.2.1), calculations of the banattire are not trivial, as
will be shown below.

Ferromagnetically ordered fractional kinks

First, let us consider a lattice of ferromagnetically oetkinteger kinks. A rotat-
ing solution that corresponds to it of the first integral of E52.1)

g(a_¢

2
> c’)x) =1-cosp+A (5.3.1)
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is given byA > 0. The solution can be expressed analytically as

$(x) = n+2am((x_—kxo),k) . kK= ZfA , (5.3.2)

where the period of the kink latticeis related tdk by
a = 2kK (k) . (5.3.3)
K (k%) denotes the complete elliptic integral of the first kinde(slee Appendix). The

parametex’ in (5.3.2) can be of any constant value here.

For a periodic array of kinks (5.3.2), the eigenvalue prob(®&.2.6) then takes the
form

{% + K2 (w? + 1) - 2K srP(X. k2)} eX) =0, (5.3.4)

with X = x/k and sng; k?) is the Jacobi elliptic function defined in the Appendix. The
boundary conditions fog(x) are given by

e(ﬂ E) ) (5.3.5)

Equation (5.3.4) is a Lamé-type equation that admits twedrly independent solu-
tions given by

_o(X+iK £ <5
€n(X) = o+ 1K) € , (5.3.6)
wheren is defined as a root of
2-Kk?
Pln) = —3 - Kw? . (5.3.7)

The Weierstrass functiorf¥u), £(u) ando(u) are defined in the Appendix.
Because of the periodic potential, we have the FloquetiBlbeorem which says that

€ (X+2K) = eF ¢, (%),

with
F(n) = 2i[K () —nd(K)] . (5.3.8)

The allowed band is given by the valuewfvhereF(n) € R, i.e.

1 1
2<@—1 and w2>@. (5.3.9)

In this regionF (7)) goes from 0 tor with = K + iy andy ranges between 0 and .

O<w

Correspondingly, the forbidden bands are given by thosgegabfn for which F(n)
has a non vanishing imaginary part, i.e.

w?><0 and %—1<w2<k—12. (5.3.10)
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In this regiony; = iy with F(r) has a purely imaginary value fromto infinity.

After calculating the continuous band-gap structures,aamealso impose the period-
icity of the boundary conditions (5.3.5) @fx) to obtain the eigenvalues of the kink
structures. In this cas€(n) is then an even multiple of. The eigenvalues are given
by wg = 0 with multiplicity one which is associated to the translatl invariance
property of the solution, and the infinite series of pointgwmultiplicity two

1[2-K :
w? = 2 [T —f/'>(|yn)] (5.3.11)
wherey, determined by
F(iyn) = 2KiZ(iyn) + 2yn ¢(K) = 2nm, n=12... (5.3.12)

These eigenvalues lie in the band > k—12

Inthe limita — oo, the above band structure goes to the one af-&i@k. The allowed
band 0< w? <  — 1 shrinks to the isolated eigenvalug = 0 and the other allowed
bandw? > & becomes the continuous spectrumh> 1.

Antiferromagnetically ordered fractional kinks

An oscillating solution that corresponds to an antiferrgmetically ordered kinks
of the first integral (5.3.1) is given by2 < A < 0. The solution can be expressed
analytically as

A
¢(9) = 2arccosksn(x X, k)], K =1+ R (5.3.13)
where the facet lengthis related td by

a=2K(K) . (5.3.14)

For this periodic (antiferromagnetically ordered) kinkti&ink (5.3.13), the eigen-
value problem will take the form

{dd—; + w?+ 1 - 2K sre(x, k2)} e(X) =0. (5.3.15)

The solutions of this eigenvalue problem are almost the garttee ones of the eigen-
value problem for ferromagnetically ordered kinks. Thetence between the solu-
tions is presented in the Appendix.

Following the same steps as above, one will obtain the atidvand of the periodic
solution, i.e.
K-1<w?<0 and o?> K. (5.3.16)
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The presence of negative informs us that a periodic integer kink-antikink solution
is unstable. A similar calculation for the forbidden bandl give

K¥-1>w® and 0<w? <K (5.3.17)

Imposing the boundary conditions to the eigenfuncti), i.e. selecting the values
of w? for which the Floquet exponent is an even multiplerpfve obtain the simple
eigenvalues)? = 0 and

w? =K, (5.3.18)
and the infinite series of double eigenvalues
k2 -1 .
2 = T - P(iyn) (5.3.19)
in the bandw? > k2, with y, defined by
F = 2K i (iyn) + 2yn ¢(K) = 2nr n=23,.... (5.3.20)
5.4 Numerical results on the band-gap calculation

After considering the limiting case = 2r, a natural question is then how the
band structure of a periodic lattice ofkinks for a general value of # 2r. Below
we present some numerical results using the numerical sskgpiained in Sec. 5.2.3
above.

541 Ferromagnetically ordered fractional kinks

First, let us consider ferromagnetically ordered fractiddnks of the Josephson
system (5.2.1) with periodicity (5.2.9) in the absence aBliurrenty. Whenk = 2n,
this state corresponds to the so-called flux-flow regime (iro&ing coordinate) [17].
This particular state has received considerable intemeseiv of practical applications
of Josephson transmission lines as submilimeter bandaiscs.

Band structures as a function efcalculated numerically for some valuesafi.e.

a = 1,2,5 are shown in Fig. 5.2. In all plots one can see that in therafesef
discontinuities £ = 0) the junction has a band gap foxOw < 1 and a single infinite
plasma band fow > 1 as is calculated analytically. Adncreases, fractional vortices
appear. Each vortex when isolated-6 o) has an eigenvalue(x) < 1 (5.2.8). But
when the vortices are coupledi§ finite), the eigenvalues form a band. Interestingly,
periodic fractional kinks withx # 0, 27 have band gaps that do not exist in the limit

k = 0, 2r. As the distance decreases, the allowed bands broaden, while the gaps
shrink and shift to higher frequencies, as can be seen irecatige Figs. 5.2(a)—(c).

As has been calculated analytically in the previous segtimre are only two forbid-
den bands wher = 2r for a given value of facet length. For a general value of
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Figure 5.2. Numerically calculated band structure of ferromagneficatdered fractional kinks as a function effor a = 5, 2, 1 shown in (a)—(c),
respectively.
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0 . .
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
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Figure 5.3: Numerically calculated band structure of ferromagnelijaaldered fractional kinks
as a function of the applied bias currenfor x = n and (a)a = 5 and (b)a = 2. There is a
critical value ofy = y.(a, ) above which the static crystal becomes unstable.

k # 2, our numerical results show that a solution might have anitefy many band
gaps.

We also have considered the influence of bias current to the staucture at various
fixed values ofa andx = &. This case is interesting for a Josephson system with
discontinuities that cannot be controlled during experitme.g. a ramp-type @4ong
Josephson junction. In Fig. 5.3, we present the band steictua periodicr-kink
lattice witha = 5 anda = 2.

For a givena, there is a critical value of(a) at which the static solution becomes
unstable. The lowest edge of the first band tends to 0 wheny(a). Fory > y.(a),
there is no static lattice fractional kinks. The system wllitch to a finite voltage
state.

5.4.2 Antiferromagnetically ordered fractional kinks

After considering the case of ferromagnetically orderedtipnal kinks, we now
study antiferromagnetically ordered fractional kinkstog tosephson junction system
(5.2.1) with periodic phase shift (5.2.10).

In Fig. 5.4, the bands of a fractional kink-antikink lattiaee traced fronx = 0 to

k = 2. There is a critical value of = «(a) at which the lowest edge of the first
allowed band touches zero, i@.— 0 whenk — k.. At that value ofk, the antifer-
romagnetically state is unstable and in the time-deperstgrdtion, it will turn into a
complimentary state [18].

The band structure of the complimentary state is the migftection of the one shown
in Fig. 5.4 with respect to the line= n. Therefore, in the interval?2— «.(a) < k <
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Figure 5.4: The same as Fig. 5.2 but for antiferromagnetically orderadtibnal kinks. For a given value of the facet lengttthere isk.(a) at which
the boundary of the lowest branch touches zero.«kFer.(a) the antiferromagnetically ordered crystal is unstablethintime-dependent equation, the
system switches to resistive states.
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Figure 5.5: The same as Fig. 5.3 but for antiferromagnetically orderactibnal kinks.

kc(a), there are two stable solutions: an antiferromagneticdifin of direct vortices
and its complementary solution.

The value of.(a) decreases as the coupling increases with 7 whena — 0. This
is in agreement with the known result [19, 20] that the inéirEhtiferromagnetically
ordered semifluxon chain is stable for aay- O.

We also have done numerical calculations on the band stesctf a chain of frac-
tional kinks under the influence of an applied bias curreng. piésent the results in
Fig. 5.5. By applying a bias current, an additional gap caenapithin each band.

Conclusions

To conclude, we have calculated the energy bands corresgptal small os-
cillations of the 1-dimensional periodic fractional votterystal as a function of the
discontinuity, the bias curreng, and the distance between two neighboring discon-
tinuity pointsa. Such a 1-dimensional vortex crystal has an optical bramchre
acoustic one in the dispersion relation, which is a directsegiuence of the vortex
pinningx # 2z. Our numerical results show that the bands of a periodicéatif
fractional kinks have more structures than a lattice ofquéciinteger kinks.

We have shown numerically that band structures can be datoy changing:. In

the case of discontinuities created artificially by injest@ne can make a wiring such
that the valuex for all discontinuities can be changed at the same time byguai
single control current. It thus provides the possibilitycttange the band structure
"on-the-fly”. For natural Oz long Josephson junctions (see, e.g., [5]) with a fixed
the discontinuityk = x, the band structure can also be smoothly controlled during
experiment by an applied bias current.

Here, we only considered the spectrum of a mirror symmemnystal. However,
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unusual properties can be expected from systems with bradéction symmetry
(ratchets) [21, 22], such as crystals of ferroelectricsf@mome superconductors [23].
From this point of view, the transport in such systems is nait gtudied. Using an ar-
ray of discontinuities with dferent strengths and distances, one might realize control-
lable fractional vortex crystals without reflection symnyednd study its nonequilib-
rium transport. In this case, the eigenvalue problem (»@f&esponds to the motion

of a continuous plane wave in a ratchet potential.

Appendix: Hypergeometric functions and Lam  é equation

The complete elliptic integrals of the first and second kisddiin this report are
defined respectively as

/2 n/2

da
KK = | ———, E(?) = | deV1i-Ksirfa. (A-1)
! V1-Ik2sirfa !

The parametek, k? < 1, is called elliptic modulus. These elliptic integrals acghing
else but specific hypergeometric functions.

The complementary elliptic integral of the first kind is defiras
K’'(K?) = K(K?), (A-2)

with the complementary modullks = V1 — k2.

The function amg, k?) which is called Jacobi’s elliptic amplitude is defined thgh
the first order dierential equation

dam()
( du

2
) = 1-K?sir? [am(u)] . (A-3)

It has the following quasi-periodic propertyin
am(u+ 2nK + 2iK’) = nr + am() .

The Jacobi’s elliptic function sa(k?) is defined through the equation

2
(dds_lrju) = (1 - eru) (1 - kzsnzu) , (A-4)

and is related to the amplitude by e sin(amu). Its periodic property is given by
sn(u+4nK + 2iK’) = sn() .
The second order fferential equation, which is known as thNgh Lamé equation, is
given by
d2

{@ —-E-N(N+ 1)‘P(u)} f(u =0, (A-5)
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with E is a real quantityN is a positive integer an®(u) denotes the Weierstrass
function. The functiorP(u) is a periodic solution of the first order equation (see [24])
dp\?
q5) =4 -e) (P-e) (P-e), (A-6)

with ey, e, 3 are the characteristic roots that uniquely determairendw’:
P U+ 2nw + 2mw’) = P(u) .
The stability equation (5.3.4) can be identified with eq.§pwithN = 1,u = x+iK’,

andE = Z‘Tkz — K2w? in virtue of the relation betweef(u) and the Jacobi elliptic
function sn(, k) (see formulas 8.151 and 8.169 of [24]):

KRsrR(X K) = P(X+iK’) + kz; L (A-7)

Relation (A-7) holds if the characteristic roots@fu) are expressed in terms kf as

2-K 2k2 -1 1+Kk?
&= —3—, &= —F3—, &=-—7, (A-8)
and the real and imaginary half periodsR(iu) are then given by the elliptic integrals

of the first kind

w=KK, o =iK(K. (A-9)

The stability equation (5.3.15) can be identified similaaty above only now with

u=x+iK’andE = 2‘—3"2—(02.

WhenN = 1, the two linearly independent solutions of (A-5) are gibsn(see, e.g.,

[24, 25, 26, 27])
ouxmn)

o(u)
wheren is an auxiliary parameter defined througly) = E, ando(u) andZ(u) are
other Weierstrass functions which are defined as

fop(U) = gFui | (A-10)

d logo(u)

A G = L, (A-11)
with the properties
fu+2K) = £(u) + 2(K) ,
o(u+2K) = — W) (A-12)

As a consequence of Eq. (A-12), we can obtain the Floquetrexpaf ., (u) which
is defined as ‘
f(u+2K) = f(u)er® (A-13)
with
F(en) = £2i [K £0n) - nd(K)] . (A-14)
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Summary

In this thesis, the stability of fractional Josephson &giin Josephson junctions
with phase shifts is investigated analytically and nunadiljc A Josephson junction
which is made of two superconductors separated by a thidatmsucan have phase
shifts in its phase dierence due to, e.g., the unconventional symmetry of thersupe
conductors or a pair of current-injectors. In such a systemagnetic field can be
spontaneously generated at the discontinuity points thatacterize the position of
the phase shifts.

The phase dierence of a Josephson junction is described by a sine-Gexqglaation.
Phase shifts make the equation nonautonomous. Becauserthatanomicity takes
a special form, the existence of spontaneously generadetidnal fluxons can be
analyzed and studied simply using phase plane analysis.

Using this very basic procedure, some important questisunsh as the presence of
critical bias current above which a voltage is created actbe junction, and the

presence of a minimum distance between two consecutiveepstafts needed for

fractional fluxons, already can be answered. It is also shitvanhthere exists some
solutions representing fractional fluxons which are praedoe unstable.

An array of short Josephson junctions with a phase shift isf also discussed. In
this array, a latticer-kink can be generated spontaneously. The unstable saodutio
representing fractional fluxons found in the long junctioigint have a stable corre-
sponding solution in the short junction arrays. It is beesaitong Josephson junction
can be seen as a continuous limit of short junction arrays. itYis shown that they
are still unstable even in the weak coupling limit.

In this thesis, the so-called tricrystal junctions thaténpvomising applications, e.g.,
as logic device based on the Josephdterefor high-performance computers are also
studied. An infinite long O Josephson junction can be considered as a combination
of two semi-infinite 0- andr-junctions. A tricrystal junction is then a combination of
three semi-infinite long Josephson junctions having onencompoint. In a tricrystal
junction system, a fluxon coming toward the common point carnréapped. Com-
binations of the Josephson characteristic lengths of ttigidual junctions that sup-
port trapped fluxons are analyzed. If one of the junctionsssunction, it is shown
that a semifluxon is stable for any combination of the Joseplebaracteristics and

it is analyzed whether the system supports a multiple-sexaifis state. The mini-
mum number of Josephson junctions forming a multicrystatiion that supports a
multiple-semifluxons state is also discussed.

The last part of the thesis deals with a Josephson junctistesywith phase shifts of
Kk, With « is not necessarily. This system is not as trivial as it might look especially
because a fractional kink can hav&dient topological charge from the corresponding
fractional antikink. A Josephson junction with one singtagpe shift and with period-
ical phase shifts is studied. The stability of fractionalks supported by the system



is analyzed in both cases. We claim that the knowledge ofahetyap structures for
periodic phase shifts is of importance also from an apptogtoint of view.
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Samenvatting

In dit proefschrift zal de stabiliteit van fractionele Jpkson vortices in Joseph-
son juncties met fase verschuivingen zowel analytisch atsaniek onderzocht wor-
den. Een Josephson junctie gemaakt uit twee supergeleideysscheiden door een
dunne isolator laag kan verschuivingenin zijn fase-vat$aiben vanwege, bijvoor-
beeld, de onconventionele symmetrie van de supergelefieicor een paar stroom-
injectors. In zo’'n systeem kan een magnetisch veld sporgagenereerd worden bij
de discontinuiteits punten die de positie van de fase veigictygen karakteriseren.

Het fase verschil van een Josephson junctie word beschdn@neen sine-Gordon
vergelijking. Fase verschuivingen leiden ertoe dat de elgking niet-autonoom is.
Vanwege de speciale vorm van de niet-autonomiciteit, kaexgstentie van spontaan
gegenereerde fractionele fluxons derondanks geanalyse®estudeerd worden door
gebruik te maken van fase vlak analyse.

Gebruikmakend van deze basis procedure, kunnen sommigregoigke vragen, zoals
de aanwezigheid van een kritische bias-stroom boven wedkeveltage gecreeerd
wordt over de junctie, en het bestaan van een minimale afstezsen twee opeenvol-
gende fase verschuivingen nodig voor het genereren vatidinate fluxons, beant-
woord worden. Ook zullen we bewijzen dat er instabiele dplp=n bestaan die frac-
tionele fluxons representeren.

Een array van korte Josephson juncties met een fase versahuanr zal bekeken
worden. In dit array kan een latticekink spontaan gegenereerd worden. De in-
stabiele oplossingen, die fractional fluxons representatie voorkomen in de lange
junctie hebben misschien stabiele corresponderendesipdes in de korte junctie
arrays. Dit komt doordat een lange Josephson junctie g&aiemvorden als een con-
tinue limiet van korte junctie arrays. Wij laten echter zaat deze oplossingen nog
steeds instabiel zijn, zelfs in de zwakke gekoppeld limiet.

In dit proefschrift worden ook zogenaamde tricrystal jisebnderzocht. Deze junc-
ties hebben veelbelovende applicaties, bijvoorbeeldgis Idevice gebaseerd op het
Josephsonfeect voor high-performance computers. Een oneindig lange@seph-
son junctie kan beschouwd worden als een combintie van teréaneindige 0- en
m-juncties. Een tricrystal junctie is dan een combinatie dde semi-oneindige lange
Josephson juncties die €én gemeenschappelijk punt helileen tricrystal junctie
systeem zal een fluxon gevangen worden als deze in de buuhetayjemeenschap-
pelijk punt komt. Combinaties van Josephson karaktekistiengtes of van individu-
ele juncties die gevangen fluxons ondersteunen worden lysered. Als één van
de juncties eem-junctie is, dan zullen we laten zien dat een semifluxon etabi
voor iedere combinatie van Josephson karakteristiekenadtwnderzocht of het
systeem een meervoudig-semifluxon toestand onderstewkt wordt het minimale
aantal Josephson juncties die een multicrystal junctieneor die een meervoudig-
semifluxon toestand ondersteunt behandeld.



Het laatste gedeelte van het proefschrift behandelt eepligen junctie systeem met
fase verschuivingen vanwaarbij« niet persé gelijk is aan. Dit systeem is niet zo
triviaal als het lijkt, omdat een fractionele kink een aredrpologische lading kan
hebben dan de corresponderende fractionele antikink. &splson junctie met één
enkele fase verschuiving en met periodieke fase versatgevi wordt bestudeerd. De
stabiliteit van fractionele kinks ondersteund door hetesys wordt geanalyseerd in
beide gevallen. Wij beweren dat kennis van de band-gaptatrugoor periodieke
fase verschuivingen belangrijk is, ook gezien vanuit dp&ssing.

128



Acknowledgment

"No one who achieves success does so without the help ofsother
The wise and confident acknowledge this help with gratitude.
-Alfred North Whitehead.

Many people have contributed in one way or another in accisinipg my study.
Therefore, it is a must for me to thank and to express my gdgg to them. Un-
fortunately, | will not be able to list them all here. Even tigh so, those who are not
mentioned surely are not forgotten.

Certainly | would like to start f§ by thanking Stephan van Gils. He is not only my
teacher and supervisor, but also a friend to whom | complai, even share my
personal problems. He let me go to any direction of resedrahltwant. Stephan,
your visit to Lumajang will always be an unforgettable moitrfen us!

| am indebted to Brenny van Groesen for the opportunity hes gag to work in his
group. My stay in the Netherlands was started from an ireitathat was arranged
and set by him and Pak Edy Soewono when | was an undergradudéssat I TB.

Next | want to thank the committee members: Arjen Doelmantife mathematical
lessons on perturbation theory), Edward Goldobin (for thétffil discussions, ex-
change ideas, and answering my questions on physics), Hegmnklamp (for sharing
informations), Bernard Geurts (for sharing experiencekatvices), Sasha Golubov,
and Niels Pedersen (for their willingness to be committemirers).

Discussions with my co-workers are also appreciated. Brtgard, those who have
not been mentioned before are Gianne Derks, Panos Kewsekidignus Johansson,
and Pak Darminto.

Further, | would like to thank colleagues and ex-colleaguteébe Applied Mathemat-
ics, in particular Manfred, Frits, Timco (ex-senior whoroduced Josephson fisi

to me in the beginning), Barbera, Natan (no more copying yaumeworks, | think
©), Sena, Helena, Kiran, Debby, Jaqueline, Davit, Vita, Pgk\Suryanto, Arnold,
Sander (who translated the summary in Dutch), Johan Sirtiokletrielle Plekenpol,
and Diana Dalenoord.

Not to forget, | also want to thank Luuk Hoevenaars for #igXof his thesis, and
Pak Trias for the cover design and Mbak Diana for the hospital

A thankful greeting goes to thienschedese hujjapll members of the Islamic Soci-
ety of the University of Twente (ISUT), Indonesian MuslimEmschede Association
(IMEA), and Perhimpunan Pelajar Indonesia di Enschede-E)fdr making a warm
Enschede.

Special thanks go to Pak Tris Probolinggo, Paklik Abas KaRakpuh Sabil, and all
pakliks andbuliks in the family of our grandfathers Mbah Chusnun Suhud andrMba
Karnawi Kebonan for their mental and spiritual supports.



Finally all the words go to Ibu and Bapak Moch. Chozin and myryger brother lwan
Sakhroni for all their constant and intense love and prayers

130



